
GESJ: Computer Science and Telecommunications 2013|No.3(39)
ISSN 1512-1232

11

REVIEW OF PERFORMANCE ANALYSIS METHODS FOR REAL-TIME
EMBEDDED SYSTEMS DESIGN

BAKARE K. AYENI

Nigerian College of Aviation Technology, Zaria
Aeronautical Telecommunication Engineering School,

P.M.B. 1031, Zaria, Kaduna State, Nigeria.
bakarre@yahoo.com

JUNAIDU B. SAHALU
Department of Mathematics

Ahmadu Bello University, Zaria, Kaduna State, Nigeria.
abuyusra@gmail.com

Abstract
Embedded systems interact with their physical environment in which they are

connected through sensors and actuators. Consequently they must execute at a pace
determined by their environment.

Performance analysis of real-time embedded system plays an important role in
the design process of complex embedded systems for analyzing essential performance
characteristics of system design at an early phase. This gives the choice of important
design decisions before much time and resources are invested in detailed
implementation. The classification criterion for performance analysis methods is given
by the set of analyzable performance metrics like timing aspects, memory requirement,
resource utilization or power consumption.

This paper reviews and compares various performance analysis methods. It also
identifies the limitations of these methods. There are many performance analysis
methods; notable among them are simulation and formal analysis methods, real-time
calculus, holistic scheduling analysis, compositional method, timed automata based
performance analysis and stochastic analysis method.

KEYWORDS: Embedded systems; sensors and actuators; performance metrics; best-
case and worst-case latencies; end-to-end delays.

1 Introduction
The embedded system designers face the problem of evaluating many candidate hardware-

software architectures with respect to various performance indexes in the early design cycle. These
indexes may include system’s throughput, response times, end-to-end delays, resource utilization,
memory requirements, etc. In most cases, building a prototype for each design alternative to directly
measure these performance characteristics is infeasible because of high implementation costs and
stringent time-to-market constraints. On the other hand, due to the increasing complexity of modern
embedded systems, back-of-the-envelope estimations cannot be used without taking the risk of
being totally incorrect. As a result, the only option left for the designers is to carry out the
performance analysis based on some kind of a performance model of the system.

Modular Performance analysis plays an important role in the design process of complex
embedded systems for analyzing essential performance characteristics of system design at an early
phase. It gives the choice of important design decisions before much time and resources are
invested in detailed implementation.

GESJ: Computer Science and Telecommunications 2013|No.3(39)
ISSN 1512-1232

12

Embedded systems are typically reactive systems that are in continuous interaction with their
physical environment to which they are connected through sensors and actuators. Consequently
they must execute at a pace determined by their environment.

Generally, embedded systems must be highly efficient in terms of power consumption, size
and cost, for example these are desirable in space exploration. In addition, they usually have to be
highly dependable, as a malfunction or breakdown of the device they control is not acceptable.

For example, three separate but related recalls of automobiles by Toyota Motor Corporation
occurred at the end of 2009 and start of 2010. Toyota initiated the recalls, the first two with the
assistance of the U.S. National Highway Traffic Safety Administration (NHTSA), after several
vehicles experienced unintended acceleration. The first recall, on November 2, 2009, was to correct
a possible incursion of an incorrect or out-of-place front driver's side floor mat into the foot pedal
which can cause pedal entrapment. The second recall, on January 21, 2010, was begun after some
crashes were shown not to have been caused by floor mat incursion. This latter defect was identified
as a possible mechanical sticking of the accelerator pedal causing unintended acceleration, referred
to as Sticking Accelerator Pedal by Toyota. The original action was initiated by Toyota in their
Defect Information Report, dated October 5, 2009, amended January 27, 2010 [35]. Following the
floor mat and accelerator pedal recalls, Toyota also issued a separate recall for hybrid anti-lock
brake software in February 2010 [36].

As of January 28, 2010, Toyota had announced recalls of approximately 5.2 million vehicles
for the pedal entrapment/floor mat problem, and an additional 2.3 million vehicles for the
accelerator pedal problem. Approximately 1.7 million vehicles are subject to both. Certain related
Lexus and Pontiac models were also affected. The next day, Toyota widened the recall to include
1.8 million vehicles in Europe and 75,000 in China. By then, the worldwide total number of cars
recalled by Toyota stood at 9 million. Sales of multiple recalled models were suspended for several
weeks as a result of the accelerator pedal recall, with the vehicles awaiting replacement parts. As of
January 2010, 21 deaths were alleged due the pedal problem since 2000, but following the January
28 recall, additional NHTSA complaints brought the alleged total to 37 [39].

The recall came at a difficult time for Toyota, as it was struggling to emerge from the
recession and had already suffered from a resultant decrease in sales and the low exchange rate
from yen to US dollar. On the day that the recall was announced in the US, it was announced that
750 jobs will be cut at Toyota's British plant at Burnaston, near Derby. It was estimated that each
Toyota dealership in the US could lose between $1.75 million to $2 million a month in revenue, a
total loss of $2.47 billion across the country from the entire incident. Additionally, Toyota Motors
as a whole announced that it could face losses totaling as much as $2 billion from lost output and
sales worldwide. Between 25 January and 29 January 2010 Toyota shares fell in value by 15% [11].
The summary of Toyota recall and problem is shown in table 1.

Table 1: Toyota recalls by place and problem

GESJ: Computer Science and Telecommunications 2013|No.3(39)
ISSN 1512-1232

13

Nowadays automotive industry generally employs what is called engine management systems
with complex processors. The application embeds microprocessor that is fast enough to provide a
real-time operation. This was firstly used in Formula 1 racing cars, but it didn't take long until
regular cars used them as well. (www.vehicle-lab.net/ecu.html). This embedded system, Electronic
Control Unit (ECUs) use a microprocessor which can process the inputs from the various sensors
in real time (see fig.1). ECUs contain both the hardware and software (firmware). The hardware
consists of electronic components on a printed circuit board (PCB), ceramic substrate or a thin
laminate substrate. The main component on this circuit board is a microcontroller chip (CPU). The
software is stored in the microcontroller or other chips on the PCB, typically use EPROMs or flash
memory so the CPU can be re-programmed by uploading updated code or replacing chips. This is
referred to as an (electronic) Engine Management System (EMS).

Fig. 1 : Engine Management System

Despite the use of EMS, product recalls happen all the time in the auto industry and
elsewhere. They are almost always embarrassing because they reveal short-comings in research and
development that have failed to be ironed out before the product has reached full-scale production
[11].

Errors can occur at various stages of design process, errors can occur at analysis, conceptual
design, programming, design test, system test and operation. But the error may not be detected until
at the final system test or in an actual operation as in the case of Toyota cars recalls.

Without overestimating, we can fairly conclude that there is a strong need for an integration
of performance analysis of system into design process at an early stage, for an economical point of
view. This paper presents various performance analysis methods and compares these methods.

The rest of the paper is organised as follows: Performance analysis methods is discussed in

section 2. Section 2.1 focuses on simulation and analysis method, while section 2.1 is on real-time
calculus. Section 2.3 is on holistic scheduling analysis. Sections 2.4, 2.5, 2.6 discussed
compositional approach, timed automata based performance analysis and stochastic analysis
method. Comparison of performance analysis method and future work are discussed in sections 3
and 4 respectively. Section 5 concludes the work.

GESJ: Computer Science and Telecommunications 2013|No.3(39)
ISSN 1512-1232

14

2 Performance Analysis Methods
There are many approaches to performance analysis methods; notable among them are

simulation and formal analysis methods, real-time calculus, holistic scheduling analysis and
compositional method. There are also Timed Automata based performance analysis and stochastic
analysis method. In the next subsections, we discussed these methods and previous work on them.
We also identified limitation of each method.

2.1 Simulation and Formal Analysis Methods
Simulation is defined as the imitation of some real thing, state of affairs, or process. The act

of simulating something generally entails representing certain key characteristics or behaviours of a
selected physical or abstract system.

Simulation is used in many contexts, including the modelling of natural systems or human
systems in order to gain insight into their functioning. Other contexts include simulation of
technology for performance optimization, safety engineering, testing, training and education.
Simulation can be used to show the eventual real effects of alternative conditions and courses of
action.

Simulation provides a tool to estimate the performance of a system model. Based on the
simulation, monitoring of system properties such as data throughput or resource usage can help to
evaluate different designs [2].

The trend for simulation based performance analysis goes to full system simulation. Although
simulation is accurate with completely specified models, it is not guaranteed to cover any corner
case. Simulation based methods do not reveal worst-case bounds on essential system properties like
end-to-end delay of events, throughput, and memory requirement. In addition, they often suffer
from long running times which depend on the accuracy that is aimed for and from high set-up effort
for each new architecture and mapping to be analyzed.

The use of SystemC, the Open SystemC Initiative (OSCI), is a widespread platform for
system level modelling and simulation, is very common. Many simulation methods

are trace-based, that is, the system designer provides traces of input stimuli that drive the
simulation of the modeled system.

SystemC is a system description language that can be used to model the behaviour level of
systems [12]. It consists of a set of library routines and macros implemented in C++, which makes it
possible to simulate hardware building blocks and concurrent processes written in standard C++.
SystemC supports the communication of C++ objects in a simulated real-time environment.
SystemC is both a description language and a simulation kernel. The code written will compile
together with the library’s simulation kernel to give an executable that behaves like the described
model when it is run. It supports the simulation of a system at various levels of abstraction from
cycle-accurate up to the behavioural level.

The main advantage of simulation is the large modelling scope. In contrast to formal analysis
methods, basically every system can be modeled, as many dynamic and complex interactions can be
taken into account for the simulation. In most of the cases the functioning and performance of a
system can be verified with the same simulation environment, simulation traces and benchmarks.

Another advantage of simulation based methods is that they are usually reusable over
different abstraction levels, as the simulation models can be refined. In other words, the level of
abstraction for the simulation can be adapted to the required degree of accuracy.

However, hardware-software co-simulations are often computationally complex and have
long running times. Therefore, performance estimation quickly becomes a bottleneck in the design
process, especially if it is used to drive a design space exploration.

For example, [14] shows that in order to find simulation patterns that lead to corner cases is
an exiting challenge for apparently trivial distributed embedded systems. Fig.2 depicts the system
architecture. In application A1, a task P1 of the CPU reads periodically data bursts from the sensor
and stores the data in the memory. A second task P2 reads the data from the memory, processes it
and transfers it to an output device via the shared bus. The task P2 has a best case execution time

GESJ: Computer Science and Telecommunications 2013|No.3(39)
ISSN 1512-1232

15

(BCET) and a worst case execution time (WCET). Suppose that the CPU implements static fixed
priority scheduling and that P1 has higher priority than P2. In the second application A2, a task P4
running on the input interface periodically sends data packets to the Digital Signal Processor (DSP)
over the shared bus. Task P5 on the DSP stores the data packets into the buffer. A second task P6
periodically removes data packets from the buffer, e.g. for playback. Suppose that the bus uses a
first come first serve scheme for arbitration. As the two data streams of A1 and A2 interfere on the
shared bus, there will be a jitter in the packet stream received by the DSP that may lead to an
underflow or overflow of the buffer.

Fig. 2 : Interference of two data streams on a shared communication resource

The interesting property of this system is that the DSP experiences the worst case input jitter

when P2 executes continuously with its BCET. The reason is that in this case the distance between
the packets of A1 on the bus is shortest and thus the transient bus load is highest. In other words,
the worst case execution of A2 coincides with the best case execution of A1.

The designer must perceive this system particularity in order to provide a simulation trace that
reaches the corner case. In case of larger and more realistic systems, several computation and
communication resources will be shared simultaneously, there may be different scheduling policies
for the various resources and data/control dependencies will play a role.

It can be deduced that in Henia et. al., work, the corner cases will be extremely difficult to
find, hence it cannot satisfied all [18] criteria for performance analysis. Therefore, simulation based
methods are not suited to determining hard performance bounds of a general distributed embedded
system. But nevertheless, simulative approaches can be useful to estimate the average system
performance.

Formal methods for performance evaluation are emerging which enable the analysis of the
whole systems using holistic and compositional approaches. In particular, the system can be
analyzed using models of the individual components that can be later composed to capture the
complete system. Formal analysis based methods lack the ability to incorporate complex
interactions and state-dependent behavior. Analysis results are therefore often pessimistic, but this
pessimism does not threaten their correctness.

In a related work of [1], Analytical performance models for Digital Signal Processor (DSP)
systems and embedded processors, the computation, communication, and memory resources of a
processor are all described using simple algebraic equations that do not take into account the
dynamics of the applications such as variations in resource loads and shared resources. These

GESJ: Computer Science and Telecommunications 2013|No.3(39)
ISSN 1512-1232

16

methods are therefore lacking in accuracy and the analysis results typically show large deviations
from the properties of the final system implementation.

Actually, there is no sharp division into simulation-based approaches and formal methods for
system-level analysis [30]. In the area of embedded real-time systems design, one of the major
differentiation criteria between these two classes of methods is the quality of results that are
obtained with the respective methods.

To overcome the limitations of these two methods, [19] combined simulation and analysis
method by a hybrid trace-based simulation methodology which though shorten simulation run-
times, but the problem of insufficient corner case coverage still remains. To overcome this problem
[3] proposed a method which combined SystemC simulation and formal analysis method based on
Real-Time Calculus (RTC). Their work guarantee to deliver worst-case (and best-case) results for
various system properties and also exhibit fast analysis run-times. Since an implementation of an
embedded real-time system must meet a number of performance requirements related for example
to end-to-end delays, buffer requirements, or throughput. When these quantities is measured on the
final system implementation, the major variations is normally observed over time, as for example
end-to-end delays may vary largely due to different input data or interference between concurrent
system activities. However, there typically exists a worst-case and a best-case result for every
quantity, such that we know for example that every observed end-to-end delay is larger or equal the
best-case delay dBC and smaller or equal the worst-case delay dWC [38].

2.2 Real-Time Calculus
Real-Time Calculus (RTC), a system-level performance analysis method for embedded

systems is a tool to characterize workload and processing capabilities respectively [30]. Real-time
calculus represents the resources and their processing or communication capabilities in a
compatible manner and therefore, allows for a modular hierarchical scheduling and arbitration for
distributed embedded systems [25].

In addition, the Real-Time Calculus allows computing various performance indexes of the
system, such as upper bounds on the delay and backlog experienced by the events while being
processed in the system [38].

The Real-Time Calculus provides powerful abstractions of the event and resource streams
and uses these abstractions to mathematically model the behavior of an elementary performance
component. This basic model can then be used for a component-wise evaluation of a whole
scheduling network.

Fig.3 depicts Real Time Calculus abstract processing component that models the processing
of an event stream by an application process. In particular, an incoming event stream represented as
a pair of arrival curves αl and αu, flows into a FIFO buffer in front of the processing component. The
component is triggered by these events and will process them in a greedy manner while being
restricted by the availability of resources, which are represented by a pair of service curves βl and

βu . On its output, the component generates an outgoing stream of processed events, represented by
a pair of arrival curves αl’ and αu. Resources left over by the component are made available again on
the resource output and are represented by a pair of service curves βl’ and βu’.

Fig. 3 : Real Time Calculus processing component

GESJ: Computer Science and Telecommunications 2013|No.3(39)
ISSN 1512-1232

17

The processing components can be freely combined to form performance models of

distributed embedded systems. For instance in order to model the sequential processing of an event
stream by two tasks, it is sufficient to connect two processing components in series so that the
outgoing event stream of the first one is the ingoing event stream of the second one.

Characterization of Event and Resource streams
Timing properties of event and resource streams are captured using arrival and service curves.

Fig. 4 : Modelling periodic event streams with jitter using arrival curves.

An event stream is abstracted by a pair of arrival curves, α-u (Δ) and α -1 (Δ), which give

respectively upper and lower bounds on the number of events seen in the event stream within any
time interval of length Δ.

A resource stream is modelled by a pair of service curves, β-u (Δ) and β-1 (Δ), which give
respectively upper and lower bounds on the resource amount (e.g. number of processor cycles)
offered within any time interval of length Δ.

The arrival and service curves can accurately describe streams with arbitrary complex timing
behavior. On the other hand, a single pair of upper and lower curves can capture an entire class of
streams with similar timing properties. For example, many standard event models (e.g. sporadic or
periodic, periodic with jitter, periodic with bursts as discussed above) can be represented by the
arrival curves [7]. Fig.4 illustrates this fact by showing how the arrival curves model a class of
periodic event streams with jitter.

Evaluation of Event and Resource streams
The evaluation can be accomplished component wise, by propagating the event and resource

streams through the network. Doing this requires a model describing how the timing properties of the
event and resource streams get changed as a result of passing through the performance components.

The model assumes that the events belonging to the same stream are processed in their arrival
order and that they are stored in a FIFO buffer while waiting to be served. Wandeler [38] introduced
a compact representation for a special class of variability characterization curves, together with
other methods to efficiently compute various Real-Time Calculus curve operations on these
compact variability characterization curves, in order to efficiently conduct system level
performance analysis and interface-based design within the Modular Performance Analysis (MPA)
framework.

The Real-Time Calculus (RTC) Toolbox is now a toolbox for MATLAB that enables
MPA framework based performance analysis and interface based design of embedded real-time
systems within MATLAB.

In a related work, [31] proposed framework for analysis of system properties which has a
concept of lower and upper arrival and service curves that capture the best- and worst-case
behaviour of the workload. In addition, they enhanced the analytical framework of Naedele et. al.,
[26] with mechanisms to determine properties of the output event streams.

These developments pave the way to a modular approach to the performance analysis [32].
The limitation of Thiele et. al. is that it can model only tasks that consume and produce only one
event per activation. Maxiaguine et. al., [24] addressed this limitation, for computing the output
event streams it becomes necessary to convert the arrival curves expressed in terms of event-based

GESJ: Computer Science and Telecommunications 2013|No.3(39)
ISSN 1512-1232

18

units into equivalents expressed in resource-based units and backwards. Since this conversion is
performed by scaling the curves with a constant factor corresponding to worst-case execution
demand (WCED) for processing of one event, the execution time variability is not accounted for,
resulting in overly pessimistic analytic bounds for workloads with large variations in execution
demand of tasks, therefore execution demand curves is used to model more than one event per
activation.

[33] relied on Real-Time Calculus to estimate various performance metrics, such as required
buffer sizes and packet delays, resulting from implementing different scheduling policies on
resource types (processing elements PEs) of a network processor. Their limitation is that their work
could not account for the buffer constraints especially those related to the playout buffers and the
variability of the task I/O rates.

Chakraborty et. al., [8] proposed a new task model for streaming applications combining the
concept of arrival curves with the recurring real-time task model (RRT), which may help to reduce
the size of task graphs of the RRT model while modelling complex event streams.

Wandeler employed RTC in conjunction with other method to analyze complex distributed
embedded real-time systems with a modular and extensible framework for system level
performance analysis but his work could not address the challenge of timing correlations in
complex embedded systems, problem of cyclic dependencies and fixed-point calculation within
performance models and the problem with dynamic systems with feedback and state-dependant
behaviour.

The limitations of RTC is that it has high level of abstraction and time-interval domain.
This shows that in MPA of real-time embedded systems, one particular method is not enough,

a hybrid approach is the best.

2.3 Holistic Scheduling Analysis
In the real-time systems domain many results are available on schedulability analysis and

worst-case response time analysis of individual tasks on single processor systems with various
scheduling policies. Examples are analysis methods for fixed-priority, rate-monotonic, deadline
monotonic or earliest deadline first scheduling [21]. Several proposals have been made to extend
the concepts of classical scheduling theory to distributed systems. Such extensions must in
particular consider the delays caused by the use of possibly shared communication resources that
can typically not be neglected. The analytic integration of processor and communication
infrastructure scheduling is often referred to as holistic scheduling analysis. But rather than
denoting a specific performance analysis method, holistic scheduling analysis comprises a
collection of techniques for scheduling analysis of distributed embedded systems. In comparison to
other performance analysis methods, the MPA framework models the service offered to an event
stream explicitly, using the concept of resource streams. This approach has a number of advantages:
First, it allows to model arbitrary complex resource availability patterns which may be experienced
by individual event streams (or tasks) as a result of applying a certain scheduling or arbitration
policy. Second, it supports the modularity of the performance analysis. Third, using the concept of
resource streams it is easier to model hierarchical scheduling schemes and various resource
reservation mechanisms. A variety of scheduling and arbitration policies can be modelled by a
proper calculation (or definition) of the service curves within a scheduling network. For example, a
fixed priority scheduling can be modelled by directly connecting the output resource stream (i.e. the
remaining service) of a higher priority component to the resource input of the next (in terms of
priority) component. For example, in the scheduling network in Fig. 5, tasks T3 and T5 are
scheduled on the CPU resource using the fixed priority scheme. T3 has the highest priority. To
model proportional share schemes and their derivatives, we need to introduce into the scheduling
network the corresponding scheduling modules that distribute the resource streams according to

GESJ: Computer Science and Telecommunications 2013|No.3(39)
ISSN 1512-1232

19

specified shares, and after that collect the remaining service. Fig.5 depicts an example of such an
arrangement for tasks T2 and T4.

The concept of scheduling network can be used to model the interactions between the
requested and the offered service. In a scheduling network, the requested and the offered service are
modelled by event and resource streams.

Fig. 5 : A scheduling network modelling the application-to-architecture mapping.

These streams flow through the network nodes, called performance components that model

the interactions between the streams. Fig.5 shows an example of scheduling network corresponding
to the application to architecture mapping. Solid and dashed arrows correspond to the event and
resource streams, respectively.

An elementary performance component receives one event and one resource stream as its
input (see Fig.5). The input event stream abstracts arrivals of a certain request type, while the input
resource stream models availability of a given resource for processing of this request type.
Abstractly seen, the input event stream triggers the performance component, which in response
proceeds by consuming resources provided by the input resource stream. This represents execution
of a task on a PE.

An elementary performance component typically also produces one event and one resource
stream as its output. An event within the output event stream signifies a completed processing of a
corresponding input event. The output resource stream represents the remaining service, that is, the
service which has not been consumed by the performance component. This remaining service can
then be used to process another event stream, i.e. it may serve as an input to another performance
component. Likewise, the output event stream may represent requests for another resource, that is, it
also may serve as an input to a different performance component. In this way, a scheduling network
representing a performance model of the entire system (with a multitude of event streams and
processing resources) can be constructed out of multiple independent performance components.

Besides the elementary performance components, a scheduling network may contain other
types of nodes:

Resource modules model processing capabilities of PEs within the architecture. A resource
module produces a stream corresponding to the unloaded resource that it models. In Fig.5, resource
modules are marked with dashed boxes. They represent the bus, DSP and CPU resources.

Input modules inject into the scheduling network event streams generated by the system’s
environment. In Fig. 5, these are In1 and In2 modules.

Scheduling modules distribute resource streams between different performance components
in accordance with a given resource management policy. A scheduling module receives and

GESJ: Computer Science and Telecommunications 2013|No.3(39)
ISSN 1512-1232

20

produ

ance analysis, in addition to the structural performance view of the system
provi lso to characterize the behavior of the event
and r

ces only resource streams (originated by the same resource). Using scheduling modules we
can model different scheduling and arbitration policies deployed on the PEs of the architecture. In
Fig.5, for example, we have share and sum scheduling modules.

Hierarchical modules are complex performance components containing subnetworks of
other components.

Calculating upper bounds on delay and backlog
In the perform

ded by the scheduling network, there is a need a
esource streams, and of the associated performance components. That is, we need to

characterize timing properties of the streams and determine how these properties change when the
streams pass through the performance components in the scheduling network as well as the backlog.

Fig. 6: Computing upper bounds on the delay, D, and the backlog, B.

Given a n elementary

erformance component, (fig.6) we can compute upper bounds on the delay and on the backlog
exper

ormance components. How
this c

 with
unrea

ay vary from one instance to another. In the
multif

e models. In the RRT model, a task is modelled by a set of subtasks arranged in a directed
acyclic graph representing the conditional, non-deterministic behavior of the task. Each subtask is

n upper arrival curve αu and a lower service curve β1 at the input of a
p

ienced by the event stream as a result of passing through this component [20].
The performance analysis of a distributed embedded system is done by combining the

analysis of the single processing components of a performance model.
In a similar way, we can find upper bounds on the total delay and on the total backlog which an

event stream may suffer as a result of passing through a chain of perf
an be done is described in [20]. This allows estimating such performance indexes of an

embedded system as the worst-case end-to-end delay and memory requirements. In the collection of
holistic scheduling analysis techniques, every technique is tailored towards a particular combination
of input event model, resource sharing policy and communication arbitration. While this permits
detailed analysis of the temporal behaviour of a specific distributed system, it has the drawback that
a new analysis method must be developed for every new input event model, communication
protocol, resource sharing policy and combinations thereof. This circumstance not only restricts the
applicability of holistic scheduling analysis, but the consequently large heterogeneous collection of
different techniques also makes it difficult to use holistic scheduling analysis in practice [38].

In a related work of the area of classical real-time scheduling theory, [21] worked on
scheduling but the result lead to poor processor utilization, and consequently to system designs

sonably high cost, or power consumption.
[23] proposed the multiframe task model that extends the classical periodic task model of Liu

by permitting periodic tasks whose WCETs m
rame task model, the WCETs of consecutive task instances are determined following a fixed

cyclic pattern. The model was further extended in [5] which allowed not only to determine the
WCET of a task instance, but also the time separation between two task instances following a cyclic
pattern.

[4] presents a recurring real-time task model (RRT) - a further generalization of the
multifram

GESJ: Computer Science and Telecommunications 2013|No.3(39)
ISSN 1512-1232

21

chara

owever,
they a

 compositional approach, every single processor or communication link of a distributed
system nnect the various components, the method relies on a set of
stand on the arrival patterns of the incoming event streams and on
the sc

may arise. Firstly, the
archit

le communication link.

ent streams. The second is
Event Adaption Functions (EAF) which must be used whenever there exists on EMIF. In this case,

cterized by its WCET, a relative deadline and a minimum triggering separation from its direct
predecessors. The whole task graph is triggered sporadically with a specified minimum time
separation between the triggering of the last subtask in the graph and the triggering of the next task
instance. Another workload model, also using conditional directed acyclic graphs to model tasks, is
reported by [27]. Instead of associating a deadline to each subtask in a task graph, the model
associated a single deadline with the whole graph. Furthermore, it exposed the parallelism within a
task for mapping on a multiprocessor architecture. In comparison to classical task models, the RRT
model offers a great flexibility in modelling variability of the execution demand and irregular inter-
arrival times. This flexibility is, however, limited to recurring patterns. The limitation of Baruah and
Pop et. al. is that if workload bursts (characterized by periods with dense arrivals of tasks or
increased execution demand or both) occur relatively seldom, then avoiding overly pessimistic
results under the RRT model necessitates to consider very large task graphs, leading to inefficiency
of the analysis. In other words, designers have to trade off the accuracy of the analysis for the
analysis time, which for the RRT model increases exponentially with the problem size [6].

[37] addressed systems with fixed priority scheduling policy deployed on processor nodes
communicating via a bus using a time division multiple access (TDMA) protocol. The methods can
be very effective in modelling complex timing relations (e.g. phasing) between the tasks. H

re often attributed to a lack of scalability and modularity [16].

2.4 Compositional Approach
In
 is analyzed locally. To interco

ard event arrival patterns. Based
heduling policy of the component, the appropriate classical analysis technique is chosen

individually for every single processor or communication link to compute the worst-case and best-
case response time of every event stream at the component as well as to compute the arrival patterns
of the outgoing event streams that will trigger succeeding components. The local analysis results are
then combined to obtain global end-to-end delays and buffer requirements.

The approach is however only feasible if the arrival patterns of the incoming event streams at
a component fit the basic models for which results on computing bounds on the response times are
available. While using compositional methods, three main problems

ecture of such systems which is highly heterogeneous, the different architectural components
are designed assuming different input event models and use different arbitration and resource
sharing strategies. This makes any kind of compositional performance analysis difficult. Secondly,
applications very often rely on a high degree of concurrency. Therefore, there are multiple control
threads, which additionally complicate timing analysis. And thirdly, we can not expect that an
embedded system only needs to process periodic events where to each event a fixed number of
bytes is associated. If for example the event stream represents a sampled voice signal, then after
several coding, processing and communication steps, the amount of data per event as well as the
timing may have changed substantially. In addition, stream based systems often also have to process
other event streams that are sporadic or bursty, e.g. they have to react to external events or deal with
best-effort traffic for coding, transcription or encryption. There are only a few approaches available
that can handle such complex interactions [18].

In a related work, Henia et. al. proposed a compositional performance analysis methodology
with the main goal to directly exploit the successful results of classical scheduling theory, in
particular for sharing a single processor or a sing

In their work, they defined two types of interfaces that may be placed between components.
The first one is Event Model Interfaces (EMIF) which performs a type conversion between certain
arrival patterns, that is, they change the mathematical representation of ev

GESJ: Computer Science and Telecommunications 2013|No.3(39)
ISSN 1512-1232

22

the ha

 adapted between
comp

ic event pattern, and are specified using a set
of cla

s. It can be
used in combination with a logic language to verify system properties by model checking [28].

lysis of an event driven system can be
repres and thus can be tackled with model
check

red
either

s a distributed embedded system. The
perfo

 automata network that
repres

hat models a periodic event
stream

 a periodic event stream with jitter J≤ P.

rdware (HW) implementation of the analyzed system must be changed in order to make the
system analyzable, for example by adding play-out buffers between components.

The work of Henia et. al. has the following limitation; the compositional approach is bound
to a limited set of classical arrival patterns that is often not sufficient to represent event streams with
complex timing behaviors. As a result, they must be represented in one of the supported arrival
patterns, usually with loss in accuracy. Also the arrival patterns often need to be

onents, either again with loss in accuracy (EMIF), or even with enforcing a change in the
system HW implementation (EAF). Finally the approach is not compositional in terms of the
resources, as their service is not modelled explicitly.

To overcome these limitations, [17] extended the compositional performance analysis
framework presented by Henia et. al., they introduced the concept of intra-stream contexts that
specify a cyclic pattern of different events that arrive on an event stream. The timing properties of
the event stream are thereby decoupled from the cycl

ssical arrival patterns. On such an event stream with intra-stream context, the WCET of every
event, when triggering a computation resource, is then determined from its event type.

2.5 Timed Automata based performance analysis
ed automata is a popular formalism for the specification of real- time systemTim

The work of [9] showed that the schedulability ana
ented as a reachability problem for timed automata
ing. The timed automata based schedulability analysis is implemented in the TIMES tool [34].

TIMES permits users to analyze systems that are described as a set of tasks which are trigge
 periodically or by external event streams modelled through appropriate timed automata.

However, the TIMES tool is limited to the schedulability analysis of single processors. Thus, it is
not suited for performance analysis of distributed systems.

In a related work, [15] presented an approach to performance analysis of distributed
embedded systems based on the model checking of timed automata networks. They modelled the
environment and the resources of a system as timed automata. The various components are then
composed into a network of timed automata that model

rmance properties of the system are verified through exhaustive model checking. They used
UPPAAL for the modelling and verification of timed automata networks.

The UPPAAL (University of Uppsala, Sweden) tool environment allows users to validate and
verify real-time systems modelled as networks of timed automata [13].

Their approach models the environment and the hardware resources. The timed automata
models of the single system components are aggregated into a timed

ents a distributed embedded system.
In modelling the environment, Fig.7 shows a timed automaton t
 with period P. After an undefined initial offset the automaton generates events at intervals of

exactly P time units. The generation of an event is modelled by the increment of the global variable
req. Fig.7 shows a timed automaton that models

Fig. 7 : Timed automata model for a periodic event stream

GESJ: Computer Science and Telecommunications 2013|No.3(39)
ISSN 1512-1232

23

Fig. 8: Timed automata model for a periodic event stream with jitter

From the above, new event stream models can be designed easily. Basically any deterministic
event stream can be modelled.

In modelling the hardware resources, each processing component is modelled as a separate
timed automaton. A processing component is either idle or busy computing some function. In the
same way, each communication link is modelled as a timed automaton. Each link is either idle or
transporting some data. For shared resources the adopted scheduling policy determines the structure
of the model. F resource with

o tasks implementing preemptive fixed priority (FP) scheduling. The resource can either be idle
r process T1 or process T2. The location pre T1 models the fact that T1 can pre-empt T2. The

synch
 for details.

or example Fig.9 shows a timed automaton that models a hardware
tw
o

ronization models a so-called urgent edge and makes sure that the corresponding edge is taken
as soon as it is enabled, see [13]

In performance analysis, timed automata models of the single system components are
aggregated into a timed automata network that represents a distributed embedded system. The
single components interact via global variables and channels. For example, suppose that the timed
automaton of an input event generator increments a global variable req to model the request of a
task activation on a certain resource.

Fig. 9 : Timed automata model for a preemptive FP resource with two tasks

The timed automaton that models the corresponding resource is sensitive to increments of the
variable req and immediately starts the execution of the corresponding task if no higher priority task
has to be executed. The completion of the task execution is modelled by the decrement of the
variable req. Let's suppose that the corresponding output event triggers a second task. This can be
modelled by incrementing a second global variable req2 simultaneously with the decrement of req.
Again, another automaton will be sensitive to the increments of req2, start the corresponding task
and so on. In this way, the propagation of events through the distributed system can be easily
modelled.

GESJ: Computer Science and Telecommunications 2013|No.3(39)
ISSN 1512-1232

24

The performance attributes of a distributed embedded system are derived by verifying
properties of the corresponding timed automata network. For instance, to ensure that the maximum
backlog of a certain task does not exceed a given value b, it is sufficient to verify the following
property by model checking: AG (req ≤ b) where 'AG' stands for 'always generally' (= invariantly)
and req is the global variable that counts the activation requests of the corresponding task. Also it is
possible to derive the exact maximum backlog by finding the smallest b that satisfies the above
property which can be done by using a binary search strategy.

The verification of end-to-end delays is a little more involved as it requires to adapt the timed
automata models of the corresponding input event generators.

Fig.10 shows the variant of a periodic event stream generator that permits to verify end-to-end
latencies.

Fig. 10: Timed automata model for a periodic input generator that measures the end-

 to-end delay

The automaton is synchronized with the system output over the global channel out and can

keep track of the amount of time that passes between the generation of an event and its output from
the system. Basically, the automaton can generate input events in the same way as the automaton of
Fig.7 (left upper transition), but it can also arbitrarily choose to measure the end- to-end delay of an
event (right upper transition). The variable n (initially 0) keeps track of the number of events that
have be l out)

be t. The clock y measures the response time and m (initially -1) equals the
numb of responses that must be discarded before the one used for the measurement is seen. At
most

k of timed
autom

ds and

en fed into the system and for which no response (a synchronization over the channe
has en received ye

er
one measurement can be in progress and m = -1 if no measurement is in progress.
Similarly measuring automaton variants are available also for other event streams. To ensure

that the worst-case end-to-end delay of an event does not exceed a given value d it is sufficient to
verify the following property by model checking: AG (IG.seen → IG.y < d)

where we assume that 'IG' is the name of the measuring automaton. Again, the exact worst-
case end-to-end delay can be determined by finding the smallest d that satisfies the property.

The timed automata method for performance analysis based on model checking permits to
derive not only hard but also exact bounds for performance properties of a distributed system but
with space problem. The modelling of a distributed embedded system as a networ

ata can easily lead to a state space explosion turning the analysis effort to be prohibitive [10].

2.6 Stochastic analysis method
Stochastic analysis method is rarely used for performance analysis because of its tighter

analytic bounds. [22] uses stochastic characterization for inter-arrival times, execution deman

GESJ: Computer Science and Telecommunications 2013|No.3(39)
ISSN 1512-1232

25

deadl

As discussed above each of these approaches has its short coming hence, in practice, a hybrid
appro

 A performance analysis approach may support the analysis of system
characteristics like timing aspects, memory requirement, resource utilization or power consumption.
The analysis of timing aspects includes the determination of best-case and worst-case latencies and

requirement is often related to the
determ

amental comparison criterion for performance analysis methods is the modelling
scope

variou

ysis is said to be correct if the result is a hard upper bound for the real
worst

re system. In contrast, the holistic
appro

omparison of performance analysis methods is the effort that it
costs the designer to create system models. The modelling effort can be largely alleviated by
appro

be greatly influenced by the dimension of the analyzed system.
xity and learning curve:

ines, and relies on queuing theoretic methods for performance evaluation. The stochastic
workload models can result in tighter analytic bounds and hence in more economical designs, but at
the expense of some (usually controlled) fraction of missed deadlines. Because of this, their
application area is limited to soft real-time.

ach is adopted.

3 Comparison of Performance Analysis Methods
Most of the comparison and classification criteria for performance analysis methods are not

directly quantifiable, but play an important role in the distinction of performance analysis
approaches.

The classification criterion for performance analysis methods is given by the set of analyzable
performance metrics.

end-to-end delays. The analysis of the memory
ination of worst-case buffer fill levels.

Modelling scope:
A fund
. By the modelling scope of a certain approach we mean the set of distributed embedded

systems that can be represented and analyzed using the modelling power of the method. For
instance, the capability to model several particular system characteristics, such as hierarchical
scheduling, blocking times, multiple task activation etc., differentiates the modelling scopes of the

s performance analysis methods.
Correctness and accuracy:
A worst-case anal
-case performance of the considered system. In other words, there are no reachable system

states which would allow the calculated bound to be violated.
The accuracy of a performance analysis is usually not quantifiable because the exact worst-

case performance of the considered system is unknown. However, a performance analysis method is
more accurate than another for a certain system if it provides a tighter upper (lower) bound for the
worst-case (best-case) performance.

Modularity:
Performance analysis methods can be classified into modular and holistic approaches. The

modular approaches analyze the performance of single components of the system and propagate the
results in order to determine the performance of the enti

aches consider the system as a whole. Modular performance analysis methods are typically
less complex and easier to reuse than holistic ones.

Modelling effort and tool support:
An important criterion for the c

priate software tools.
Analysis effort:
This criterion considers the computational effort that is necessary to obtain performance

analysis results. For instance one could compare the running times of the tools that implement the
different performance analysis approaches.

Scalability:
Another relevant comparison criterion for performance analysis approaches is scalability. This

point is pertinent to several of the previous criteria: the modelling and analysis efforts as well as the
accuracy of the results may

End-user comple

GESJ: Computer Science and Telecommunications 2013|No.3(39)
ISSN 1512-1232

26

Other aspects that can be considered for the comparison of performance analysis approaches
are the complexity experienced by the end-user that applies a certain method or tool, as well as the
progression of its learning curve. In particular, these points are largely influenced by the amount of
background knowledge that a user must acquire about a certain performance analysis approach in
order

copes is
restric esult is shown in Table 2.

 to be able to apply it. The multitude of heterogeneities among the performance analysis
approaches and the different levels of abstraction in the modelling of particular system attributes
make this task very complex [29]. As a result, the comparison of the various modelling s

ted to a number of key attributes and the r
The comparison is based on the modelling capabilities of concrete implementations of the

various performance analysis approaches. Also it is necessary to point out that a 'low/poor' in a cell
of the table does not mean that the modelling of the corresponding system characteristic is
conceptually impossible for the corresponding performance analysis approach. Only that, it denotes
that no significant research has so far been conducted to integrate this particular aspect.

Table 2 : Comparison of performance analysis methods

Simulation and
Formal
Analysis

Real-Time
Calculus

Holistic
Scheduling
Analysis

Compositional
Method

Timed Automata
Based Performance
Analysis

Resource
Utilization 5 5 3 4 5

Memory
(Buffe 4 4 2 3 3 r
Spaces)
Throughput 3 4 4 3 4
E
d

nd-to-end
elays 4 2 2 2 4

Modularity 2 4 3 4 4
Response Time 4 3 3 3 4
Reusability 4 3 2 3 3

Interpret ion
 Goo Very High - 5
 / High - 4

edium - 3
 / Low - 2

o Very Low - 1

ce there is a need to identify required

minim explosion in timed automata method.
Furth tion time (WCET) of a program during
desig

 Conclusion

real-time embedded systems may endanger human life or may cause
substa

tics of system design at an early phase. It

at
Very d /
Good
Average / M
Poor
Very Po r /

4 Future Work
Future extensions of this work is possible, for instan

be covered to pre nt sta spaceal set of states to ve te
er research work is also required on a worst-case execu

time embedded systems. n and verification of real-

5
Failure of many
ntial loss in economic values. Embedded system designer will find it difficult to build a

prototype for each design alternative to directly measure performance characteristics because of
high implementation costs, stringent time-to-market constraints or the risk of being totally incorrect.

Performance analysis plays an important role in the design process of complex embedded
systems for analyzing essential performance characteris

GESJ: Computer Science and Telecommunications 2013|No.3(39)
ISSN 1512-1232

27

gives oice of important design decisions before much time and resources are
inves

1. ance Tradeoffs in Multithreaded Processors.IEEE Transactio on

for ESL Design
(http://citeseerx.ist.psu.edu) 2009.

3. Bertozzi, D. Bruni, N. Drago, F. Fummi, and M. Poncino. SystemC
nd emulation of multiprocessor SoC designs. IEEE Computer, 36(4): (2003)

tion and
95.

 Real-

e David, and Kim G. Larsen. A tutorial on UPPAAL. In Marco
Bernardo and Flavio Corradini, editors, Formal Methods for the Design of Real-Time

 designer the ch
ted in detailed implementation of the system.
But each of the performance analysis technique has one or more limitations which can be

partitioned into two sub-problems; program path analysis and micro-architecture modelling. These
limitations are categorised as worst-case execution time (WCET) of a program when designing and
verifying real-time embedded systems. The WCET depends both on the program flow, such as loop
iterations and function calls, and on hardware factors, such as caches and pipelines. WCET
estimates should be both safe, no underestimation allowed and tight as little overestimation as
possible. This shows that in performance analysis of real-time embedded systems design,
implementation of one particular method may not be enough, a hybrid approach may be the best
option.

6 Acknowledgement
This work would not have been possible without the advice and support of staff of my

department, Mathematics department, Ahmadu Bello Univerity. Zaria, Nigeria.

7 References

 Agarwal A., Perform
Parallel and Distributed Systems, 3(5): (September 1992) 525–539.

2. Alexander Viehl, Timo Schonwald, Oliver Bringmann and Wolfgang Rosenstie. Formal
Performance Analysis and Simulation of UML/SysML Models

 Benini L., D.
cosimulation a
53–59.

4. Baruah S. K. A general model for recurring real-time tasks. In Proceedings of the
a. IEEE Real-Time Systems Symposium (RTSS), (1998) pages 114–122.

5. Baruah, S. K., D. Chen, S. Gorinsky, and A. K. Mok. Generalized multiframe tasks. Real-
Time Systems, 17(1): (1999) 5–22.

6. Baruah S. K.. Dynamic and static-priority scheduling of recurring real time tasks. Real-Time
Systems, 24(1): (2003) 93–128.

7. Chakraborty S., S. K¨unzli, and L. Thiele. A general framework for analysing system
a. properties in platform-based embedded system designs. In Design, Automa

190–1Test in Europe (DATE), Munich, Germany, IEEE Press, (2003) pages
8. Chakraborty S. and L. Thiele. A new task model for streaming applications and its

schedulability analysis. In Design, Automation and Test in Europe (DATE), (2005) pages
486–491.

9. Christer Norstrom, Anders Wall, and Wang Yi. Timed automata as task models forevent-
driven systems. In RTCSA '99: Proceedings of the Sixth International Conference on
Tim Ce omputing Systems and Applications, Washington, DC, USA, IEEE Computer
Society, (1999) page 182.

10. Ericsson C., A. Wall, and W. Yi. Timed Automata as Task Models for Event-Driven
Systems. In RTCSA ’99: Proceedings of the Sixth International Conference on Real-Time
Computing Systems and Applications, Washington, DC, USA, (1999) page 182.

11. Guardian.co.uk. (May 7, 2008) "Toyota shares fall for 6th day as recall woes deepen",
London http://www.guardian.co.uk/business/feedarticle/8921329. Retrieved 2010-04 -30.

12. Grotker, T., S. Liao, G. Martin, and S. Swan. System Design with SystemC. Kluwer
Academic Publishers, Boston, MA, USA, May 2002.

13. Gerd Behrmann, Alexandr

GESJ: Computer Science and Telecommunications 2013|No.3(39)
ISSN 1512-1232

28

Systems: 4th International School on Formal Methods for the Design of Computer,
Communication, and Software Systems, SFM-RT 2004, number 3185 in LNCS, Springer-
Verlag, (September 2004) pages 200-236.

14. Henia R., A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst. System level
Performance Analysis – the symta/s approach. IEE Proceedings – Computers and Digital

ta based analysis of embedded System

than, and S. Dey. System level performance analysis for designing on-

 Thiran P. Network calculus: a theory of deterministic queuing Systems

rope (DATE), Paris, France, IEEE

mining a Schedulability Region using

sing v r b e t k releases and processor

f Performance Analysis Methods for Distributed

36-241.

, Springer-Verlag (2001) pages 416–434.
nce

ssor DSPs. IEEE Signal Processing Magazine, special Issue on

rocessing architectures. In Proceedings of the 39th Design Automation Conference (DAC),

Techniques, 152(2): (2005) 148–166.
15. Hendriks Martijn and Verhoef Marcel. Timed automa

architectures. Technical Report ICIS-R06003, ICIS, Radboud University, Nijmegen, The
Netherlands, (2006).

16. Jersak M., R. Henia, and R. Ernst. Context-aware performance analysis for efficient
embedded systems design. In Proc. 7th Design, Automation and Test in Europe (DATE),
(2004) 1046 - 1051.

17. Jersak M., Richter K., and Ernst R.. Performance analysis for complex embedded
applications. International Journal of Embedded Systems, Special Issue on Codesign for
SoC (2004).

18. Lothar Thiele and Ernesto Wandeler. Performance Analysis of Distributed Embedded
Systems Networked Embedded Systems Handbook, CRC Press/Taylor & Francis 2009.

19. Lahiri K., A. Raghuna
 chip communication architectures. IEEE Transactions on Computer Aided-Design of
Integrated Circuits and Systems, 20(6): (2001) 768–783.

20. Le Boudec J.-Y. and
for the Internet. Springer-Verlag New York, Inc., (2001).

21. Liu L. C. and James W. Layland. Scheduling algorithms for multiprogramming in a hard-real-time
environment. Journal of the ACM, 20(1): (1973) 46–61.

22. Lehoczky J. P. Real-time queueing theory. In Proceedings of the 17th IEEE Real-Time Systems
Symposium (RTSS), Washington, DC, USA, IEEE Computer Society (1996) page 186.

23. Mok A. K. and D. Chen. A multiframe model for real-time tasks. IEEE Transactions on
Software Engineering, 23(10): (1997) 635–645.

24. Maxiaguine A., S. K¨unzli, and L. Thiele. Workload characterization model for tasks with variable
execution demand. In Design, Automation and Test in Eu
Computer Society (Feb.2004) pages 1040–1045.

25. Nikolay Stoimenov, Lothar Thiele ETH Zurich. Deter
Modular Performance Analysis and Real-Time Interfaces in WSN. (2007)

26. Naedele M., L. Thiele, and M. Eisenring. Characteri a ia l as
capacities. In Proceedings of the 14th IFAC World Congress, Beijing, July (1999).

 Pop P., P. Eles, and Z. Peng. Performance estimation for embedded systems with data27. and control
dependencies. In Proceedings of the 8th International Workshop on Hardware/Software Co-Design
(CODES), (2000) pages 62–66.

28. Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2): (1994) 183-235.

29. Simon Perathoner. Evaluation and Comparison o
Embedded Systems Master's thesis submitted to the Swiss Federal Institute of Technology Zurich
(2006).

30. Simon Kunzli, Francesco Poletti, Luca Benini, Lothar Thiele. Combining Simulation and Formal
Methods for System-Level Performance Analysis In Proceedings of DATE. 2006, 2

31. Thiele L., S. Chakraborty, M. Gries, A. Maxiaguine, and J. Greutert. Embedded software in network
processors - models and algorithms. In Proceedings of the 1st International Workshop on Embedded
Software (EMSOFT) London, UK

32. Thiele L., E.Wandeler, and S. Chakraborty. A stream-oriented component model for performa
analysis of multiproce
Hardware/Software Co-design for DSP, 22(3): (2005) 38 - 46.

33. Thiele L., S. Chakraborty, M. Gries, and S. K¨unzli. A framework for evaluating design tradeoffs in
packet p
New Orleans LA, USA, ACM Press (June 2002) pages 880–885.

GESJ: Computer Science and Telecommunications 2013|No.3(39)
ISSN 1512-1232

29

34. Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson, and Wang Yi. Times - A tool
for modelling and implementation of embedded systems. In TACAS '02: Proceedings of the 8th
International Conference on Tools and Algorithms for the Construction and Analysis of Systems,

istributed hard real-time systems.

beds autotuning (2006).

London, UK,. Springer-Verlag (2002) pages 460-464
35. Toyota USA Newsroom http://pressroom.toyota.com/pr/tms/toyota/toyota-consumer-safety-

 advisory-102572. Retrieved April 2010.
36. Takahashi and Yoshio http://online.wsj.com/article/BT-CO-20100209702754

html?mod=WSJ_World_MIDDLEHeadlinesAsia Wall Street Journal. Retrieved April 4, 2010.
37. Tindell K. and Clark J. Holistic schedulability analysis for d

Microprocessing & Microprogramming, 40(2-3): (1994) 117–134.
38. Wandeler Ernesto, Modular Performance Analysis and Interface-Based Design for Embedded Real-

Time Systems. A dissertation submitted to the Swiss Federal Institute of Technology
Zurich.Embedded.com – Under Hood:Robot Guitar em

39. www.en.wikipedia.org/wiki/Embedded_system. Retrieved 2010-02-29.

Article received: 2012-08-09

	REVIEW OF PERFORMANCE ANALYSIS METHODS FOR REAL-TIME EMBEDDED SYSTEMS DESIGN
	2.1 Simulation and Formal Analysis Methods
	2.2 Real-Time Calculus
	2.3 Holistic Scheduling Analysis
	2.4 Compositional Approach
	2.5 Timed Automata based performance analysis
	2.6 Stochastic analysis method
	3 Comparison of Performance Analysis Methods
	7 References

