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Abstract  
Embedded systems interact with their physical environment in which they are 

connected through sensors and actuators. Consequently they must execute at a pace 
determined by their environment.  

Performance analysis of real-time embedded system plays an important role in 
the design process of complex embedded systems for analyzing essential performance 
characteristics of system design at an early phase. This gives the choice of important 
design decisions before much time and resources are invested in detailed 
implementation. The classification criterion for performance analysis methods is given 
by the set of analyzable performance metrics like timing aspects, memory requirement, 
resource utilization or power consumption.  

This paper reviews and compares various performance analysis methods. It also 
identifies the limitations of these methods. There are many performance analysis 
methods; notable among them are simulation and formal analysis methods, real-time 
calculus, holistic scheduling analysis, compositional method, timed automata based 
performance analysis and stochastic analysis method.  
 
KEYWORDS: Embedded systems; sensors and actuators; performance metrics; best-
case and worst-case latencies; end-to-end delays. 

 

1    Introduction 
The embedded system designers face the problem of evaluating many candidate hardware-

software architectures with respect to various performance indexes in the early design cycle. These 
indexes may include system’s throughput, response times, end-to-end delays, resource utilization, 
memory requirements, etc. In most cases, building a prototype for each design alternative to directly 
measure these performance characteristics is infeasible because of high implementation costs and 
stringent time-to-market constraints. On the other hand, due to the increasing complexity of modern 
embedded systems, back-of-the-envelope estimations cannot be used without taking the risk of 
being totally incorrect. As a result, the only option left for the designers is to carry out the 
performance analysis based on some kind of a performance model of the system.  

Modular Performance analysis plays an important role in the design process of complex 
embedded systems for analyzing essential performance characteristics of system design at an early 
phase. It gives the choice of important design decisions before much time and resources are 
invested in detailed implementation.  
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Embedded systems are typically reactive systems that are in continuous interaction with their 
physical environment to which they are connected through sensors and actuators. Consequently 
they must execute at a pace determined by their environment.  

Generally, embedded systems must be highly efficient in terms of power consumption, size 
and cost, for example these are desirable in space exploration. In addition, they usually have to be 
highly dependable, as a malfunction or breakdown of the device they control is not acceptable.  

For example, three separate but related recalls of automobiles by Toyota Motor Corporation 
occurred at the end of 2009 and start of 2010. Toyota initiated the recalls, the first two with the 
assistance of the U.S. National Highway Traffic Safety Administration (NHTSA), after several 
vehicles experienced unintended acceleration. The first recall, on November 2, 2009, was to correct 
a possible incursion of an incorrect or out-of-place front driver's side floor mat into the foot pedal 
which can cause pedal entrapment. The second recall, on January 21, 2010, was begun after some 
crashes were shown not to have been caused by floor mat incursion. This latter defect was identified 
as a possible mechanical sticking of the accelerator pedal causing unintended acceleration, referred 
to as Sticking Accelerator Pedal by Toyota. The original action was initiated by Toyota in their 
Defect Information Report, dated October 5, 2009, amended January 27, 2010 [35]. Following the 
floor mat and accelerator pedal recalls, Toyota also issued a separate recall for hybrid anti-lock 
brake software in February 2010 [36].  

As of January 28, 2010, Toyota had announced recalls of approximately 5.2 million vehicles 
for the pedal entrapment/floor mat problem, and an additional 2.3 million vehicles for the 
accelerator pedal problem. Approximately 1.7 million vehicles are subject to both. Certain related 
Lexus and Pontiac models were also affected. The next day, Toyota widened the recall to include 
1.8 million vehicles in Europe and 75,000 in China. By then, the worldwide total number of cars 
recalled by Toyota stood at 9 million. Sales of multiple recalled models were suspended for several 
weeks as a result of the accelerator pedal recall, with the vehicles awaiting replacement parts. As of 
January 2010, 21 deaths were alleged due the pedal problem since 2000, but following the January 
28 recall, additional NHTSA complaints brought the alleged total to 37 [39].  

The recall came at a difficult time for Toyota, as it was struggling to emerge from the 
recession and had already suffered from a resultant decrease in sales and the low exchange rate 
from yen to US dollar. On the day that the recall was announced in the US, it was announced that 
750 jobs will be cut at Toyota's British plant at Burnaston, near Derby. It was estimated that each 
Toyota dealership in the US could lose between $1.75 million to $2 million a month in revenue, a 
total loss of $2.47 billion across the country from the entire incident. Additionally, Toyota Motors 
as a whole announced that it could face losses totaling as much as $2 billion from lost output and 
sales worldwide. Between 25 January and 29 January 2010 Toyota shares fell in value by 15% [11]. 
The summary of Toyota recall and problem is shown in table 1. 

 
Table 1: Toyota recalls by place and problem 
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Nowadays automotive industry generally employs what is called engine management systems 
with complex processors. The application embeds microprocessor that is fast enough to provide a 
real-time operation. This was firstly used in Formula 1 racing cars, but it didn't take long until 
regular cars used them as well. (www.vehicle-lab.net/ecu.html). This embedded system, Electronic 
Control Unit (ECUs)  use a microprocessor which can process the inputs from the various sensors 
in real time (see fig.1). ECUs contain both the hardware and software (firmware).  The hardware 
consists of electronic components on a printed circuit board (PCB), ceramic substrate or a thin 
laminate substrate. The main component on this circuit board is a microcontroller chip (CPU). The 
software is stored in the microcontroller or other chips on the PCB, typically use EPROMs or flash 
memory so the CPU can be re-programmed by uploading updated code or replacing chips. This is 
referred to as an (electronic) Engine Management System (EMS). 
 

 
 

Fig. 1 :  Engine Management System 
 
 

Despite the use of EMS, product recalls happen all the time in the auto industry and 
elsewhere. They are almost always embarrassing because they reveal short-comings in research and 
development that have failed to be ironed out before the product has reached full-scale production 
[11]. 

Errors can occur at various stages of design process, errors can occur at analysis, conceptual 
design, programming, design test, system test and operation. But the error may not be detected until 
at the final system test or in an actual operation as in the case of Toyota cars recalls.  

Without overestimating, we can fairly conclude that there is a strong need for an integration 
of performance analysis of system into design process at an early stage, for an economical point of 
view. This paper presents various performance analysis methods and compares these methods. 

 
The rest of the paper is organised as follows: Performance analysis methods is discussed in 

section 2. Section 2.1 focuses on simulation and analysis method, while section 2.1 is on real-time 
calculus. Section 2.3 is on holistic scheduling analysis. Sections 2.4, 2.5, 2.6 discussed 
compositional approach, timed automata based performance analysis and stochastic analysis 
method. Comparison of performance analysis method and future work are discussed in sections 3 
and 4 respectively. Section 5 concludes the work. 
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2    Performance Analysis Methods 
There are many approaches to performance analysis methods; notable among them are 

simulation and formal analysis methods, real-time calculus, holistic scheduling analysis and 
compositional method. There are also Timed Automata based performance analysis and stochastic 
analysis method. In the next subsections, we discussed these methods and previous work on them. 
We also identified limitation of each method.  

2.1   Simulation and Formal Analysis Methods 
Simulation is defined as the imitation of some real thing, state of affairs, or process. The act 

of simulating something generally entails representing certain key characteristics or behaviours of a 
selected physical or abstract system. 

Simulation is used in many contexts, including the modelling of natural systems or human 
systems in order to gain insight into their functioning. Other contexts include simulation of 
technology for performance optimization, safety engineering, testing, training and education. 
Simulation can be used to show the eventual real effects of alternative conditions and courses of 
action. 

Simulation provides a tool to estimate the performance of a system model. Based on the 
simulation, monitoring of system properties such as data throughput or resource usage can help to 
evaluate different designs [2]. 

The trend for simulation based performance analysis goes to full system simulation. Although 
simulation is accurate with completely specified models, it is not guaranteed to cover any corner 
case. Simulation based methods do not reveal worst-case bounds on essential system properties like 
end-to-end delay of events, throughput, and memory requirement. In addition, they often suffer 
from long running times which depend on the accuracy that is aimed for and from high set-up effort 
for each new architecture and mapping to be analyzed.  

The  use of SystemC,  the Open SystemC Initiative (OSCI), is  a widespread platform for 
system level modelling and simulation, is very common. Many simulation methods  

are trace-based, that is,  the system designer provides traces of input stimuli that drive the 
simulation of the modeled system. 

SystemC   is a system description language that can be used to model the behaviour level of 
systems [12]. It consists of a set of library routines and macros implemented in C++, which makes it 
possible to simulate hardware building blocks and concurrent processes written in standard C++. 
SystemC supports the communication of C++ objects in a simulated real-time environment. 
SystemC is both a description language and a simulation kernel. The code written will compile 
together with the library’s simulation kernel to give an executable that behaves like the described 
model when it is run. It  supports the simulation of a system at various levels of abstraction  from 
cycle-accurate up to the behavioural level.  

The main advantage of simulation is the large modelling scope. In contrast to formal analysis 
methods, basically every system can be modeled, as many dynamic and complex interactions can be 
taken into account for the simulation. In most of the cases the functioning and performance of a 
system can be verified with the same simulation environment, simulation traces and benchmarks. 

Another advantage of simulation based methods is that they are usually reusable over 
different abstraction levels, as the simulation models can be refined. In other words, the level of 
abstraction for the simulation can be adapted to the required degree of accuracy. 

However, hardware-software co-simulations are often computationally complex and have 
long running times. Therefore, performance estimation quickly becomes a bottleneck in the design 
process, especially if it is used to drive a design space exploration. 

For example, [14] shows that in order to find simulation patterns that lead to corner cases is 
an exiting challenge for apparently trivial distributed embedded systems. Fig.2  depicts the system 
architecture. In application A1, a task P1 of the CPU reads periodically data bursts from the sensor 
and stores the data in the memory. A second task P2 reads the data from the memory, processes it 
and transfers it to an output device via the shared bus. The task P2 has a best case execution time 
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(BCET) and a worst case execution time (WCET). Suppose that the CPU implements static fixed 
priority scheduling and that P1 has higher priority than P2. In the second application A2, a task P4 
running on the input interface periodically sends data packets to the Digital Signal Processor (DSP) 
over the shared bus. Task P5 on the DSP stores the data packets into the buffer. A second task P6 
periodically removes data packets from the buffer, e.g. for playback. Suppose that the bus uses a 
first come first serve scheme for arbitration. As the two data streams of A1 and A2 interfere on the 
shared bus, there will be a jitter in the packet stream received by the DSP that may lead to an 
underflow or overflow of the buffer.   

 
Fig. 2 : Interference of two data streams on a shared communication resource 

 
The interesting property of this system is that the DSP experiences the worst case input jitter 

when P2 executes continuously with its BCET. The reason is that in this case the distance between 
the packets of A1 on the bus is shortest and thus the transient bus load is highest. In other words, 
the worst case execution of A2 coincides with the best case execution of A1. 

The designer must perceive this system particularity in order to provide a simulation trace that 
reaches the corner case. In case of larger and more realistic systems, several computation and 
communication resources will be shared simultaneously, there may be different scheduling policies 
for the various resources and data/control dependencies will play a role. 

It can be deduced that in Henia et. al., work, the corner cases will be extremely difficult to 
find, hence it cannot satisfied  all [18] criteria for performance analysis. Therefore, simulation based 
methods are not suited to determining hard performance bounds of a general distributed embedded 
system. But nevertheless, simulative approaches can be useful to estimate the average system 
performance. 

Formal methods for performance evaluation are emerging which enable the analysis of the 
whole systems using holistic and compositional approaches. In particular, the system can be 
analyzed using models of the individual components that can be later composed to capture the 
complete system. Formal analysis based methods lack the ability to incorporate complex 
interactions and state-dependent behavior. Analysis results are therefore often pessimistic, but this 
pessimism does not threaten their correctness. 

In a related work of [1], Analytical performance models for Digital Signal Processor (DSP) 
systems and embedded processors, the computation, communication, and memory resources of a 
processor are all described using simple algebraic equations that do not take into account the 
dynamics of the applications such as variations in resource loads and shared resources. These 
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methods are therefore lacking in accuracy and the analysis results typically show large deviations 
from the properties of the final system implementation. 

Actually, there is no sharp division into simulation-based approaches and formal methods for 
system-level analysis [30]. In the area of embedded real-time systems design, one of the major 
differentiation criteria between these two classes of methods is the quality of results that are 
obtained with the respective methods. 

To overcome the limitations of these two methods, [19] combined simulation and analysis 
method by a hybrid trace-based simulation methodology which though shorten simulation run-
times, but  the problem of insufficient corner case coverage still remains. To overcome this problem 
[3] proposed a method which combined SystemC simulation and formal analysis method based on 
Real-Time Calculus (RTC). Their work guarantee to deliver worst-case (and best-case) results for 
various system properties and  also exhibit fast analysis run-times. Since an implementation of an 
embedded real-time system must meet a number of performance requirements related for example 
to end-to-end delays, buffer requirements, or throughput. When  these quantities is measured on the 
final system implementation, the major variations is normally observed over time, as for example 
end-to-end delays may vary largely due to different input data or interference between concurrent 
system activities. However, there typically exists a worst-case and a best-case result for every 
quantity, such that we know for example that every observed end-to-end delay is larger or equal the 
best-case delay dBC and smaller or equal the worst-case delay dWC [38]. 

2.2  Real-Time Calculus 
Real-Time Calculus (RTC), a system-level performance analysis method for embedded 

systems is a tool to characterize workload and processing capabilities respectively [30]. Real-time 
calculus represents the resources and their processing or communication capabilities in a 
compatible manner and therefore, allows for a modular hierarchical scheduling and arbitration for 
distributed embedded systems [25]. 

In addition, the Real-Time Calculus allows computing various performance indexes of the 
system, such as upper bounds on the delay and backlog experienced by the events while being 
processed in the system [38]. 

The Real-Time Calculus provides powerful abstractions of the event and resource streams 
and uses these abstractions to mathematically model the behavior of an elementary performance 
component. This basic model can then be used for a component-wise evaluation of a whole 
scheduling network.  

Fig.3 depicts Real Time Calculus abstract processing component that models the processing 
of an event stream by an application process. In particular, an incoming event stream represented as 
a pair of arrival curves αl and αu, flows into a FIFO buffer in front of the processing component. The 
component is triggered by these events and will process them in a greedy manner while being 
restricted by the availability of resources, which are represented by a pair of service curves βl and   

βu . On its output, the component generates an outgoing stream of processed events, represented by 
a pair of arrival curves αl’ and αu. Resources left over by the component are made available again on 
the resource output and are represented by a pair of service curves βl’ and   βu’. 

 
Fig. 3 : Real Time Calculus processing component 
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The processing components can be freely combined to form performance models of 

distributed embedded systems. For instance in order to model the sequential processing of an event 
stream by two tasks, it is sufficient to connect two processing components in series so that the 
outgoing event stream of the first one is the ingoing event stream of the second one. 

Characterization of Event and Resource streams 
Timing properties of event and resource streams are captured using arrival and service curves. 

 
Fig. 4 :  Modelling periodic event streams with jitter using arrival curves. 

 
An event stream is abstracted by a pair of arrival curves, α-u (Δ) and  α -1 (Δ), which give 

respectively upper and lower bounds on the number of events seen in the event stream within any 
time interval of length Δ. 

A resource stream is modelled by a pair of service curves, β-u (Δ) and β-1 (Δ), which give 
respectively upper and lower bounds on the resource amount (e.g. number of processor cycles) 
offered within any time interval of length Δ.  

The arrival and service curves can accurately describe streams with arbitrary complex timing 
behavior. On the other hand, a single pair of upper and lower curves can capture an entire class of 
streams with similar timing properties. For example, many standard event models (e.g. sporadic or 
periodic, periodic with jitter, periodic with bursts as discussed above) can be represented by the 
arrival curves [7]. Fig.4 illustrates this fact by showing how the arrival curves model a class of 
periodic event streams with jitter. 

Evaluation of Event and Resource streams  
The evaluation can be accomplished component wise, by propagating the event and resource 

streams through the network. Doing this requires a model describing how the timing properties of the 
event and resource streams get changed as a result of passing through the performance components.  

The model assumes that the events belonging to the same stream are processed in their arrival 
order and that they are stored in a FIFO buffer while waiting to be served. Wandeler [38] introduced 
a compact representation for a special class of variability characterization curves, together with 
other methods to efficiently compute various Real-Time Calculus curve operations on these 
compact variability characterization curves, in order to efficiently conduct system level 
performance analysis and interface-based design within the Modular Performance Analysis (MPA) 
framework.  

The Real-Time Calculus (RTC)  Toolbox is now  a toolbox   for   MATLAB  that enables 
MPA framework based performance analysis and interface based design of  embedded real-time 
systems within MATLAB.  

In a related work, [31] proposed framework for analysis of system properties which has a 
concept of lower and upper arrival and service curves that capture the best- and worst-case 
behaviour of the workload. In addition, they enhanced the analytical framework of Naedele et. al., 
[26] with mechanisms to determine properties of the output event streams. 

These developments pave the way to a modular approach to the performance analysis [32]. 
The limitation of Thiele et. al. is that it can model only tasks that consume and produce only one 
event per activation. Maxiaguine et. al., [24] addressed this limitation,  for computing the output 
event streams it becomes necessary to convert the arrival curves expressed in terms of event-based 
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units into equivalents expressed in resource-based units and backwards. Since this conversion is 
performed by scaling the curves with a constant factor corresponding to worst-case execution 
demand (WCED) for processing of one event, the execution time variability is not accounted for, 
resulting in overly pessimistic analytic bounds for workloads with large variations in execution 
demand of tasks, therefore execution demand curves is used to model more than one event per 
activation. 

[33] relied on Real-Time Calculus to estimate various performance metrics, such as required 
buffer sizes and packet delays, resulting from implementing different scheduling policies on 
resource types ( processing elements PEs) of a network processor. Their limitation is that their work 
could  not account for the buffer constraints especially those related to the playout buffers and the 
variability of the task I/O rates. 

Chakraborty et. al., [8] proposed a new task model for streaming applications combining the 
concept of arrival curves with the recurring real-time task model (RRT), which may help to reduce 
the size of task graphs of the RRT model while modelling complex event streams. 

Wandeler employed RTC in conjunction with other method to analyze complex distributed 
embedded real-time systems with a modular and extensible framework for system level 
performance analysis but his work could not address the challenge of timing correlations in 
complex embedded systems, problem of cyclic dependencies and fixed-point calculation within 
performance models and the problem with dynamic systems with feedback and state-dependant 
behaviour.  

The limitations of  RTC is that it has high level of abstraction and time-interval domain. 
This shows that in MPA of real-time embedded systems, one particular method is not enough, 

a hybrid approach is the best. 

 

2.3  Holistic Scheduling Analysis 
In the real-time systems domain many results are available on schedulability analysis and 

worst-case response time analysis of individual tasks on single processor systems with various 
scheduling policies. Examples are analysis methods for fixed-priority, rate-monotonic, deadline 
monotonic or earliest deadline first scheduling [21].  Several proposals have been made to extend 
the concepts of classical scheduling theory to distributed systems. Such extensions must in 
particular consider the delays caused by the use of possibly shared communication resources that 
can typically not be neglected. The analytic integration of processor and communication 
infrastructure scheduling is often referred to as holistic scheduling analysis. But rather than 
denoting a specific performance analysis method, holistic scheduling analysis comprises a 
collection of techniques for scheduling analysis of distributed embedded systems. In comparison to 
other performance analysis methods, the MPA framework models the service offered to an event 
stream explicitly, using the concept of resource streams. This approach has a number of advantages: 
First, it allows to model arbitrary complex resource availability patterns which may be experienced 
by individual event streams (or tasks) as a result of applying a certain scheduling or arbitration 
policy. Second, it supports the modularity of the performance analysis. Third, using the concept of 
resource streams it is easier to model hierarchical scheduling schemes and various resource 
reservation mechanisms.  A variety of scheduling and arbitration policies can be modelled by a 
proper calculation (or definition) of the service curves within a scheduling network. For example, a 
fixed priority scheduling can be modelled by directly connecting the output resource stream (i.e. the 
remaining service) of a higher priority component to the resource input of the next (in terms of 
priority) component. For example, in the scheduling network in Fig. 5, tasks T3 and T5 are 
scheduled on the CPU resource using the fixed priority scheme. T3 has the highest priority. To 
model proportional share schemes and their derivatives, we need to introduce into the scheduling 
network the corresponding scheduling modules that distribute the resource streams according to 
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specified shares, and after that collect the remaining service. Fig.5 depicts an example of such an 
arrangement for tasks T2 and T4.  

The concept of scheduling network can be used to model the interactions between the 
requested and the offered service. In a scheduling network, the requested and the offered service are 
modelled by event and resource streams.  

 
Fig. 5 : A scheduling network modelling the application-to-architecture mapping. 

 
These streams flow through the network nodes, called performance components that model 

the interactions between the streams. Fig.5 shows an example of scheduling network corresponding 
to the application to architecture mapping. Solid and dashed arrows correspond to the event and 
resource streams, respectively. 

An elementary performance component receives one event and one resource stream as its 
input (see Fig.5). The input event stream abstracts arrivals of a certain request type, while the input 
resource stream models availability of a given resource for processing of this request type. 
Abstractly seen, the input event stream triggers the performance component, which in response 
proceeds by consuming resources provided by the input resource stream. This represents execution 
of a task on a PE. 

An elementary performance component typically also produces one event and one resource 
stream as its output. An event within the output event stream signifies a completed processing of a 
corresponding input event. The output resource stream represents the remaining service, that is, the 
service which has not been consumed by the performance component. This remaining service can 
then be used to process another event stream, i.e. it may serve as an input to another performance 
component. Likewise, the output event stream may represent requests for another resource, that is, it 
also may serve as an input to a different performance component. In this way, a scheduling network 
representing a performance model of the entire system (with a multitude of event streams and 
processing resources) can be constructed out of multiple independent performance components. 

Besides the elementary performance components, a scheduling network may contain other 
types of nodes: 

Resource modules model processing capabilities of PEs within the architecture. A resource 
module produces a stream corresponding to the unloaded resource that it models. In Fig.5, resource 
modules are marked with dashed boxes. They represent the bus, DSP and CPU resources. 

Input modules inject into the scheduling network event streams generated by the system’s 
environment. In Fig. 5, these are In1 and In2 modules. 

Scheduling modules distribute resource streams between different performance components 
in accordance with a given resource management policy. A scheduling module receives and 
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produ

ance analysis, in addition to the structural performance view of the system 
provi lso to characterize the behavior of the event 
and r

ces only resource streams (originated by the same resource). Using scheduling modules we 
can model different scheduling and arbitration policies deployed on the PEs of the architecture. In 
Fig.5, for example, we have share and sum scheduling modules. 

Hierarchical modules are complex performance components containing subnetworks of 
other components.  

Calculating upper bounds on delay and backlog 
In the perform

ded by the scheduling network, there is a need a
esource streams, and of the associated performance components. That is, we need to 

characterize timing properties of the streams and determine how these properties change when the 
streams pass through the performance components in the scheduling network as well as the backlog. 
 

 
Fig. 6:     Computing upper bounds on the delay, D, and the backlog, B. 

 
Given a n elementary 

erformance component, (fig.6) we can compute upper bounds on the delay and on the backlog 
exper

ormance components. How 
this c

 with 
unrea

ay vary from one instance to another. In the 
multif

e models. In the RRT model, a task is modelled by a set of subtasks arranged in a directed 
acyclic graph representing the conditional, non-deterministic behavior of the task. Each subtask is 

n upper arrival curve  αu  and a lower service curve β1 at the input of a
p

ienced by the event stream as a result of passing through this component [20]. 
The performance analysis of a distributed embedded system is done by combining the 

analysis of the single processing components of a performance model.  
In a similar way, we can find upper bounds on the total delay and on the total backlog which an 

event stream may suffer as a result of passing through a chain of perf
an be done is described in [20]. This allows estimating such performance indexes of an 

embedded system as the worst-case end-to-end delay and memory requirements. In the collection of 
holistic scheduling analysis techniques, every technique is tailored towards a particular combination 
of input event model, resource sharing policy and communication arbitration. While this permits 
detailed analysis of the temporal behaviour of a specific distributed system, it has the drawback that 
a new analysis method must be developed for every new input event model, communication 
protocol, resource sharing policy and combinations thereof. This circumstance not only restricts the 
applicability of holistic scheduling analysis, but the consequently large heterogeneous collection of 
different techniques also makes it difficult to use holistic scheduling analysis in practice [38].  

In a related work of the area of classical real-time scheduling theory, [21] worked on 
scheduling but the result lead to poor processor utilization, and consequently to system designs

sonably high cost, or power consumption.  
[23] proposed the multiframe task model that extends the classical periodic task model of Liu 

by permitting periodic tasks whose WCETs m
rame task model, the WCETs of consecutive task instances are determined following a fixed 

cyclic pattern. The model was further extended in [5] which allowed not only to determine the 
WCET of a task instance, but also the time separation between two task instances following a cyclic 
pattern. 

[4] presents a recurring real-time task model (RRT) - a further generalization of the 
multifram
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chara

owever, 
they a

 compositional approach, every single processor or communication link of a distributed 
system nnect the various components, the method relies on a set of 
stand on the arrival patterns of the incoming event streams and on 
the sc

may arise. Firstly, the 
archit

le communication link.  

ent streams. The second is  
Event Adaption Functions (EAF) which  must be used whenever there exists on EMIF. In this case, 

cterized by its WCET, a relative deadline and a minimum triggering separation from its direct 
predecessors. The whole task graph is triggered sporadically with a specified minimum time 
separation between the triggering of the last subtask in the graph and the triggering of the next task 
instance. Another workload model, also using conditional directed acyclic graphs to model tasks, is 
reported by [27]. Instead of associating a deadline to each subtask in a task graph, the model 
associated a single deadline with the whole graph. Furthermore, it exposed the parallelism within a 
task for mapping on a multiprocessor architecture. In comparison to classical task models, the RRT 
model offers a great flexibility in modelling variability of the execution demand and irregular inter-
arrival times. This flexibility is, however, limited to recurring patterns. The limitation of Baruah and 
Pop et. al. is that if workload bursts (characterized by periods with dense arrivals of tasks or 
increased execution demand or both) occur relatively seldom, then avoiding overly pessimistic 
results under the RRT model necessitates to consider very large task graphs, leading to inefficiency 
of the analysis. In other words, designers have to trade off the accuracy of the analysis for the 
analysis time, which for the RRT model increases exponentially with the problem size [6]. 

[37] addressed systems with fixed priority scheduling policy deployed on processor nodes 
communicating via a bus using a time division multiple access (TDMA) protocol. The methods can 
be very effective in modelling complex timing relations (e.g. phasing) between the tasks. H

re often attributed to a lack of scalability and modularity [16]. 

 

2.4  Compositional Approach 
In
 is analyzed locally. To interco

ard event arrival patterns. Based 
heduling policy of the component, the appropriate classical analysis technique is chosen 

individually for every single processor or communication link to compute the worst-case and best-
case response time of every event stream at the component as well as to compute the arrival patterns 
of the outgoing event streams that will trigger succeeding components. The local analysis results are 
then combined to obtain global end-to-end delays and buffer requirements. 

The approach is however only feasible if the arrival patterns of the incoming event streams at 
a component fit the basic models for which results on computing bounds on the response times are 
available. While using compositional methods, three main problems 

ecture of such systems which is highly heterogeneous, the different architectural components 
are designed assuming different input event models and use different arbitration and resource 
sharing strategies. This makes any kind of compositional performance analysis difficult. Secondly, 
applications very often rely on a high degree of concurrency. Therefore, there are multiple control 
threads, which additionally complicate timing analysis. And thirdly, we can not expect that an 
embedded system only needs to process periodic events where to each event a fixed number of 
bytes is associated. If for example the event stream represents a sampled voice signal, then after 
several coding, processing and communication steps, the amount of data per event as well as the 
timing may have changed substantially. In addition, stream based systems often also have to process 
other event streams that are sporadic or bursty, e.g. they have to react to external events or deal with 
best-effort traffic for coding, transcription or encryption. There are only a few approaches available 
that can handle such complex interactions [18].  

In a related work, Henia et. al. proposed a compositional performance analysis methodology 
with the main goal to directly exploit the successful results of classical scheduling theory, in 
particular for sharing a single processor or a sing

In their work, they defined two types of interfaces that may be placed between components. 
The first one is Event Model Interfaces (EMIF) which performs a type conversion between certain 
arrival patterns, that is, they change the mathematical representation of ev
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the ha

 adapted between 
comp

ic event pattern, and are specified using a set 
of cla

s. It  can be 
used in combination with a logic language to verify system properties by model checking [28].  

lysis of an event driven system can be 
repres  and thus can be tackled with model 
check

red 
either

s a distributed embedded system. The 
perfo

 automata network that 
repres

hat models a periodic event 
stream

 a periodic event stream with jitter J≤ P. 

rdware (HW) implementation of the analyzed system must be changed in order to make the 
system analyzable, for example by adding play-out buffers between components. 

The work of Henia et. al. has the following limitation;  the compositional approach is bound 
to a limited set of classical arrival patterns that is often not sufficient to represent event streams with 
complex timing behaviors. As a result, they must be represented in one of the supported arrival 
patterns, usually with loss in accuracy. Also the arrival patterns often need to be

onents, either again with loss in accuracy (EMIF), or even with enforcing a change in the 
system HW implementation (EAF). Finally the approach is not compositional in terms of the 
resources, as their service is not modelled explicitly.  

To overcome these limitations, [17] extended the compositional performance analysis 
framework presented by Henia et. al., they introduced the concept of intra-stream contexts that 
specify a cyclic pattern of different events that arrive on an event stream. The timing properties of 
the event stream are thereby decoupled from the cycl

ssical arrival patterns. On such an event stream with intra-stream context, the WCET of every 
event, when triggering a computation resource, is then determined from its event type. 

 

2.5  Timed Automata based performance analysis 
ed automata is a popular formalism for the specification of real- time systemTim

The work of [9] showed  that the schedulability ana
ented as a reachability problem for timed automata
ing. The timed automata based schedulability analysis is implemented in the TIMES tool [34]. 

TIMES permits users to analyze systems that are described as a set of tasks which are trigge
 periodically or by external event streams modelled through appropriate timed automata. 

However, the TIMES tool is limited to the schedulability analysis of single processors. Thus, it is 
not suited for performance analysis of distributed systems. 

In a related work, [15] presented an approach to performance analysis of distributed 
embedded systems based on the model checking of timed automata networks. They modelled the 
environment and the resources of a system as timed automata. The various components are then 
composed into a network of timed automata that model

rmance properties of the system are verified through exhaustive model checking. They used  
UPPAAL for the modelling and verification of timed automata networks.  

The UPPAAL (University of Uppsala, Sweden) tool environment allows users to validate and 
verify real-time systems modelled as networks of timed automata [13]. 

Their approach models the environment and the hardware resources. The timed automata 
models of the single system components are aggregated into a timed

ents a distributed embedded system. 
In modelling the environment, Fig.7 shows a timed automaton t
 with period P. After an undefined initial offset the automaton generates events at intervals of 

exactly P time units. The generation of an event is modelled by the increment of the global variable 
req. Fig.7 shows a timed automaton that models

 
Fig. 7 : Timed automata model for a periodic event stream 
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Fig. 8: Timed automata model for a periodic event stream with jitter 

 
 

From the above, new event stream models can be designed easily. Basically any deterministic 
event stream can be modelled. 

In modelling the hardware resources, each processing component is modelled as a separate 
timed automaton. A processing component is either idle or busy computing some function. In the 
same way, each communication link is modelled as a timed automaton. Each link is either idle or 
transporting some data. For shared resources the adopted scheduling policy determines the structure 
of the model. F  resource with 

o tasks implementing preemptive fixed priority (FP) scheduling. The resource can either be idle 
r process T1 or process T2. The location pre T1 models the fact that T1 can pre-empt T2. The 

synch
 for details. 

or example Fig.9 shows a timed automaton that models a hardware
tw
o

ronization models a so-called urgent edge and makes sure that the corresponding edge is taken 
as soon as it is enabled, see [13]

In performance analysis, timed automata models of the single system components are 
aggregated into a timed automata network that represents a distributed embedded system. The 
single components interact via global variables and channels. For example, suppose that the timed 
automaton of an input event generator increments a global variable req to model the request of a 
task activation on a certain resource. 

 
Fig. 9 : Timed automata model for a preemptive FP resource with two tasks 

The timed automaton that models the corresponding resource is sensitive to increments of the 
variable req and immediately starts the execution of the corresponding task if no higher priority task 
has to be executed. The completion of the task execution is modelled by the decrement of the 
variable req. Let's suppose that the corresponding output event triggers a second task. This can be 
modelled by incrementing a second global variable req2 simultaneously with the decrement of req. 
Again, another automaton will be sensitive to the increments of req2, start the corresponding task 
and so on. In this way, the propagation of events through the distributed system can be easily 
modelled. 
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The performance attributes of a distributed embedded system are derived by verifying 
properties of the corresponding timed automata network. For instance, to ensure that the maximum 
backlog of a certain task does not exceed a given value b, it is sufficient to verify the following 
property by model checking: AG (req ≤  b) where 'AG' stands for 'always generally' (= invariantly) 
and req is the global variable that counts the activation requests of the corresponding task. Also it is 
possible to derive the exact maximum backlog by finding the smallest b that satisfies the above 
property which  can be done by using a binary search strategy. 

The verification of end-to-end delays is a little more involved as it requires to adapt the timed 
automata models of the corresponding input event generators. 

Fig.10 shows the variant of a periodic event stream generator that permits to verify end-to-end 
latencies. 

 
Fig. 10: Timed automata model for a periodic input generator that measures the  end- 

       to-end delay 
 
The automaton is synchronized with the system output over the global channel out and can 

keep track of the amount of time that passes between the generation of an event and its output from 
the system. Basically, the automaton can generate input events in the same way as the automaton of  
Fig.7 (left upper transition), but it can also arbitrarily choose to measure the end- to-end delay of an 
event (right upper transition). The variable n (initially 0) keeps track of the number of events that 
have be l out) 

be t. The clock y measures the response time and m (initially -1) equals the 
numb  of responses that must be discarded before the one used for the measurement is seen. At 
most 

k of timed 
autom

ds and 

en fed into the system and for which no response (a synchronization over the channe
has en received ye

er
one measurement can be in progress and m = -1 if no measurement is in progress.  
Similarly measuring automaton variants are available also for other event streams. To ensure 

that the worst-case end-to-end delay of an event does not exceed a given value d it is sufficient to 
verify the following property by model checking:  AG (IG.seen → IG.y < d) 

where we assume that 'IG' is the name of the measuring automaton. Again, the exact worst-
case end-to-end delay can be determined by finding the smallest d that satisfies the property. 

The timed automata method for performance analysis based on model checking permits to 
derive not only hard but also exact bounds for performance properties of a distributed system but 
with space problem. The modelling of a distributed embedded system as a networ

ata can easily lead to a state space explosion turning the analysis effort to be prohibitive [10]. 

2.6  Stochastic analysis method 
Stochastic analysis method is rarely used for performance analysis because of its tighter 

analytic bounds. [22] uses stochastic characterization for inter-arrival times, execution deman
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deadl

As discussed above each of these approaches has its short coming hence, in practice, a hybrid 
appro

 A performance analysis approach may support the analysis of system 
characteristics like timing aspects, memory requirement, resource utilization or power consumption. 
The analysis of timing aspects includes the determination of best-case and worst-case latencies and 

requirement is often related to the 
determ

amental comparison criterion for performance analysis methods is the modelling 
scope

 
variou

ysis is said to be correct if the result is a hard upper bound for the real 
worst

re system. In contrast, the holistic 
appro

omparison of performance analysis methods is the effort that it 
costs the designer to create system models. The modelling effort can be largely alleviated by 
appro

be greatly influenced by the dimension of the analyzed system. 
xity and learning curve: 

ines, and relies on queuing theoretic methods for performance evaluation. The stochastic 
workload models can result in tighter analytic bounds and hence in more economical designs, but at 
the expense of some (usually controlled) fraction of missed deadlines. Because of this, their 
application area is limited to soft real-time. 

ach is adopted. 
 

3   Comparison of Performance Analysis Methods 
Most of the comparison and classification criteria for performance analysis methods are not 

directly quantifiable, but play an important role in the distinction of performance analysis 
approaches. 

The classification criterion for performance analysis methods is given by the set of analyzable 
performance metrics.

end-to-end delays. The analysis of the memory 
ination of worst-case buffer fill levels. 

Modelling scope: 
A fund
. By the modelling scope of a certain approach we mean the set of distributed embedded 

systems that can be represented and analyzed using the modelling power of the method. For 
instance, the capability to model several particular system characteristics, such as hierarchical 
scheduling, blocking times, multiple task activation etc., differentiates the modelling scopes of the

s performance analysis methods. 
Correctness and accuracy: 
A worst-case anal
-case performance of the considered system. In other words, there are no reachable system 

states which would allow the calculated bound to be violated. 
The accuracy of a performance analysis is usually not quantifiable because the exact worst-

case performance of the considered system is unknown. However, a performance analysis method is 
more accurate than another for a certain system if it provides a tighter upper (lower) bound for the 
worst-case (best-case) performance. 

Modularity: 
Performance analysis methods can be classified into modular and holistic approaches. The 

modular approaches analyze the performance of single components of the system and propagate the 
results in order to determine the performance of the enti

aches consider the system as a whole. Modular performance analysis methods are typically 
less complex and easier to reuse than holistic ones. 

Modelling effort and tool support: 
An important criterion for the c

priate software tools. 
Analysis effort: 
This criterion considers the computational effort that is necessary to obtain performance 

analysis results. For instance one could compare the running times of the tools that implement the 
different performance analysis approaches. 

Scalability: 
Another relevant comparison criterion for performance analysis approaches is scalability. This 

point is pertinent to several of the previous criteria: the modelling and analysis efforts as well as the 
accuracy of the results may 

End-user comple
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Other aspects that can be considered for the comparison of performance analysis approaches 
are the complexity experienced by the end-user that applies a certain method or tool, as well as the 
progression of its learning curve. In particular, these points are largely influenced by the amount of 
background knowledge that a user must acquire about a certain performance analysis approach in 
order

copes is 
restric esult is shown in Table 2. 

 

 to be able to apply it. The multitude of heterogeneities among the performance analysis 
approaches and the different levels of abstraction in the modelling of particular system attributes 
make this task very complex [29]. As a result, the comparison of the various modelling s

ted to a number of key attributes and the r
The comparison is based on the modelling capabilities of concrete implementations of the 

various performance analysis approaches. Also it is necessary to point out that a 'low/poor' in a cell 
of the table does not mean that the modelling of the corresponding system characteristic is 
conceptually impossible for the corresponding performance analysis approach. Only that, it denotes 
that no significant research has so far been conducted to integrate this particular aspect. 

 
Table 2 : Comparison of performance analysis methods 
 

Simulation  and 
Formal 
Analysis 

Real-Time 
Calculus 

Holistic 
Scheduling 
Analysis 

Compositional 
Method 

Timed Automata 
Based Performance 
Analysis 

Resource 
Utilization 5 5 3 4 5 

Memory 
(Buffe 4 4 2 3 3 r 
Spaces) 
Throughput 3 4 4 3 4 
E
d

nd-to-end 
elays 4 2 2 2 4 

Modularity 2 4 3 4 4 
Response Time 4 3 3 3 4 
Reusability 4 3 2 3 3 
 

Interpret ion 
 Goo  Very High  - 5 
 / High    - 4 

edium   - 3 
 / Low    - 2 

o Very  Low  - 1 

 
ce there is a need to identify required 

minim  explosion in timed automata method. 
Furth tion time (WCET) of a program during 
desig

   Conclusion  

real-time embedded systems may endanger human life or may cause 
substa

tics of system design at an early phase. It 

at
Very d /
Good
Average / M
Poor
Very Po r / 
 
 
4  Future Work
Future extensions of this work is possible, for instan

be covered to pre nt sta  spaceal set of states to  ve te
er research work is also required on a worst-case execu

time embedded systems. n and verification of real-
 
5
Failure of many 
ntial loss in economic values. Embedded system designer will find it difficult to build a 

prototype for each design alternative to directly measure performance characteristics because of 
high implementation costs, stringent time-to-market constraints or the risk of being totally incorrect.  

Performance analysis plays an important role in the design process of complex embedded 
systems for analyzing essential performance characteris
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gives oice of important design decisions before much time and resources are 
inves

1. ance Tradeoffs in Multithreaded Processors.IEEE   Transactio on 

for ESL Design 
(http://citeseerx.ist.psu.edu) 2009. 

3.  Bertozzi, D. Bruni, N. Drago, F. Fummi, and M. Poncino. SystemC 
nd emulation of multiprocessor SoC designs. IEEE Computer, 36(4): (2003) 

tion and 
95. 

 Real-

e David, and Kim G. Larsen. A tutorial on UPPAAL. In Marco 
Bernardo and Flavio Corradini, editors, Formal Methods for the Design of Real-Time 

 designer the ch
ted in detailed implementation of the system.  
But each of the performance analysis technique has one or more limitations which can be 

partitioned into two sub-problems; program path analysis and micro-architecture modelling. These 
limitations are categorised as worst-case execution time (WCET) of a program when designing and 
verifying real-time embedded systems. The WCET depends both on the program flow, such as loop 
iterations and function calls, and on hardware factors, such as caches and pipelines. WCET 
estimates should be both safe, no underestimation allowed and tight as little overestimation as 
possible. This shows that in performance analysis of real-time embedded systems design, 
implementation of one particular method may not be enough, a hybrid approach may be the best 
option. 
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