
GESJ: Computer Science and Telecommunications 2016|No. 3(49)
ISSN 1512-1232

 30

UDC 004.4

THE MODERN APPROACHES IN PARALLEL PROGRAMMING

Natela Archvadze1, Merab Pkhovelishvili2, Lia Shetsiruli3, Otar Ioseliani4

1 Department of Computer Sciences Faculty of Exact and Natural Sciences I. Javakhishvili Tbilisi State University 2,
University st., 0143, Tbilisi, GEORGIA, Natela.Archvadze@tsu.ge

2 Department of Programming N.Muskhelishvili Computing Mathematic Institute of Georgian Technical University, 7,
Akuri st., 0193, Tbilisi, GEORGIA, merab5@list.ru

3 Department of Mathematics and Computer Science Shota Rustaveli State University, 35, Ninoshvili st., 6010, Batumi,
Georgia, lika77u@yahoo.com

4 Georgian-American University, 8 Merab Aleksidze str., 0160 Tbilisi, Georgia, otari.ioseliani@gmail.com

Abstract:

The technologies of traditional parallel programing MPI (Message Passing
Interface) and OpenMP will be discussed, in addition the role of these technologies and
inabilities. The directions of modern parallel programming which appeared by using
functional languages will be presented. The parallelizing of the programs using
competition will be reviewed.

Keywords: Message Passing Interface, functional programming, parallel programing,
F#.

1. Introduction

Nowadays the most used technology of parallel programming for distributed memory
computing systems is MPI (Message Passing Interface) [1]. The main interaction solution between
processes in such a systems is a message passing.

MPI is being supported by the programming languages like FORTRAN and C/C++. The full
version of MPI consist from more than 100 functions and procedures. MPI supports creation of
MIMD (Multiple Instruction Multiple Data) style of parallel programming which means unification
of processes with different code. Actually it is very difficult to create and debug programs in such a
style for this reason in practice is being used SPMD (Single Program Multiple Data) model in
which all of the processes are using the same code.

For data processing is being used parallel or conveyor type of processing.
There are three type of parallel computing systems:
• Multiprocessors with shared memory;
• Computing systems with distributed memory;
• GRID – technologies.

1.1 The executing script of MPI program mpirun
The executing script of MPI program mpirun has following face:
mpirun –np N – machinefile ipfile
<Program with arguments>

mailto:Natela.Archvadze@tsu.ge
mailto:merab5@list.ru
mailto:otari.ioseliani@gmail.com

GESJ: Computer Science and Telecommunications 2016|No. 3(49)
ISSN 1512-1232

 31

Where N is the count of processes and ipfile is the name of the file which contains the IP

addresses or names on which should be executed the program.
The main method of interaction between processes is sending messages. The message is the

collection of some type of data. Each message has several attributes including the number of
process sender, the number of process receiver, the identifier (tag) of process etc. Process receiver
by using tag can choose two messages received from one process. Tag is the nonnegative integer

For processing message attributes in C/C++ is being used special structure and in FORTRAN
is being used array, the fields of array contain the values of attributes.

1.2 OpenMP technology
OpenMP technology is being used for the computers with shared memory. The main idea is

to convert usual sequential program on C++ (FORTRAN or C) into parallel version using the
compiler directives, special functions and environment variables.

The program created with OpenMP consists from sequential and parallel districts. The
program begins from sequential district and at the beginning only one processor (thread) is working.
While accessing into parallel district is being created several threads which are executing one and
the same program. This program is being executed on different processors (cores). The directives
of OpenMP can be separated in three parts: the determinant of parallel part, the distributor of tasks
and synchronizer.

The parallel district:
The parallel district is being determined by the directive:
#pragma omp parallel [opcial [[,] opcial]…]

In the openMP the parallel district has following appearance:

<Execute in parallel> (<Program district 1>, < Program
district 2>… < Program district N>)

2. Parallel programing on functional programing languages
2.1 Parallel programming on LISP
For parallelism on LISP is being used following functionalities – MAPCAR and MAPLIST:

(MAPCAR F (a b … h)) => ((F a) (F b)… (F h))
(MAPLIST F (a b … h)) => ((F (a b…h)) (F (b…h))… (F (h)))

We can say that, map – functionalities are parallel by nature. It is necessary to create the
programming language compiler for multiprocessor computers that it would be possible to execute
computing function for each argument on different processor. Each computing should be performed
independently on processor which returns the result as map – functional indicating the row which
has been called [2].

In one of modern versions of LISP, Objective CAML is introduced the concept of the threads
and it is a solution of recording parallel algorithms.

Objective CAML has a library for “Light” processes, threads which are organized by
processes and not by operating system. Such a processes are using addresses area of their process
creator and for that reason need less resources. The principal difference between thread and process

GESJ: Computer Science and Telecommunications 2016|No. 3(49)
ISSN 1512-1232

 32

is that if memory is being used for data at the same time for the same program child processes.
Usage of threads is the solution of executing parallel algorithms within language.

2.2 Parallelism realization on extended LISP

Considering function with three arguments:
 (func x y z)

Which requires the execution of following sequence:
 (z in parallel (x afer y)).

It can be written this way:
 (defun func (¶llel (z &concurrent (x y))) body)

The parallel analog of (progn func1 … funcn) function can be determined as:

 (parallelprogn func1 … funcn)

The realization of this function:
 ([f g h] .aglist) => (f.arglist) (g.arglist) (h.aglist)

The sequential composition operator seq can be introduced following:
 If e1 – is not empty construction, then
 e1 `seq` e2 (result e2);

In opposite case “empty value”.
By this operator is declared that the construction e1 should be processed before will be

returned the result of e2.

2.3 Lazy programming or transferred evaluations
Lazy programming or transferred evaluations means that the computations are being

postponed until the results will not became necessary. It allows to reduce the amount of
computations at the expense of those computations. The programmer can describe dependencies
between functions and do not observe the exploitation of the “extra computations”.

[5] Describes the asynchronous, parallel and competitive programming principles and
features of the language of Haskell. Parallelism in Haskell is natural and safe usage of
computational cores. It is characterized by following features:

 Parallel programming is determined. This means that parallel program can be verified in
parallel without execution.

a) Parallel program is a high level and a declarative and has no direct connections with
mechanisms as it is synchronization or message exchange.

As more abstractive the program is as it is simpler to execute parallel software, however it
should be taken in account the quality of specification and dependence on data.

Lazy programing has been implemented naturally into functional paradigm because the
functional programming languages have useful tools for software prototyping, fast processing of
mathematical software and projecting electro – computational machines [5].

2.4 Parallel programming on F#
Parallel programing on F# is determined by three directions [6]
1) By the async workflows which gives an opportunity to sequenced writing of code and

are not determining callback methods obviously and for this reason are using async block;
2) MailboxPrepreocessor is the class of the F# standard library which makes realization of

one of the patterns of parallel programming.

GESJ: Computer Science and Telecommunications 2016|No. 3(49)
ISSN 1512-1232

 33

3) Processing of events using .NET. F# allows manipulation of event threads and works
with them as a sequence and uses functions filter, map, split and others.

Conclusion
At the beginning of resolving practical issues should be developed parallel algorithms and

considered following issues:
- How will be changed the life cycle of resolving the issue using parallel algorithm;
- While determining the issue how should be estimated parallelism;
- How to evaluate the results of parallel algorithm;
- How will be changed the determination of the issue during transition in parallelism;
- What kind of solutions are provided by the parallel programing paradigm on the level of

development of parallel algorithms;
- Which solutions are being used for distributing parallel algorithm for solving issue on the

stage which is before development the program?

Usage of parallel computational system will be useful in case when used technology and

programming paradigm corresponds the architecture of the system and the structure of algorithm
corresponds the structure of computational system and for this reason it can be necessary
conversion of algorithm.

 References
[1] P. Tsereteli. Parallel Programing Using MPI and OpenMP technologies. Lectures,

2014, sangu.ge/images/MPI_OMP.docx
[2] Natela Archvadze, Merab Pkhovelishvili. Programming paradigm and the aspects of

data processing in functional paradigm. Georgian Electronic Scientific Journal:
Computer Science and Telecommunications 2009|No.2(19) .

[3] Graham Hutton. Programming in Haskell. 2007. ISBN:9780521871723
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511813672

[4] Dushkin R. V. Functional programing in Haskell — M.: DMK-Press, 2007. — 608 стр.
ISBN 5-94074-335-8

[5] Simon Marlow. Parallel and Concurrent Programming Haskell. 2012.
[6] Chris Smith. Programing F#. Publisher: Symbol-Plus, 2011.

Article received: 2016-07-18

http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511813672

