
GESJ: Computer Science and Telecommunications 2017|No.2(52) 
ISSN 1512-1232 

    30 

UDC 519.7 
Fuzzyfication of the Bloch Ball 

 
Guram Kashmadze 

 
Computer science department, Iv. Javakhishvili Tbilisi State University 

Tbilisi, Georgia. gkashmadze@yahoo.com 
 

 
Abstract 

By the concept of the Bloch ball we mean a three-dimensional shape that includes 
the sphere as well as all of the interior points (3-ball enclosed by 2-sphere). The Bloch 
ball is a geometric representation of qubit states. In this article we suggest a new sight 
on the Bloch ball considering this one via fuzzy set. A C++ style algorithm computes 
the value of a hash function using the von Neumann entropy of a density matrix. This 
value is transformed into the value of the linguistic variable. We get the possibility to 
express our knowledge on quantum states in linguistic terms. 
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I. QUBIT AND THE BLOCH BALL  
Articles of P. Benioff [1], R. Feynman [2] and D. Deutsch [3] must be regarded as the origins 

of quantum computers. R. Feynman asked: “The first question is, What kind of computer are we 
going to use to simulate physics?” After analyzing the physical reality he answered: “…if you want 
to make a simulation of nature, you’d better make it quantum mechanical…” (see [2]). 

The well-known textbook by Michael A. Nielsen and Isaac L. Chuang [4] is one of the most 
cited books in Quantum Computation and Quantum Information. There are many publications (see, 
for example [5], [6] and bibliography in nominated books) also devoted to the field of science 
mentioned above. 

Counterpart of bit (classical unit of information) in quantum computation and quantum 
information is qubit (or quantum bit) - the simplest quantum state system.   

Formally, a qubit is described by the unit vector of 2-dimensional complex Hilbert space 
using the Dirac’s bra-ket notation:   

|ψ› = a|0› + b|1› = a(1,0)t + b(0,1)t = (a, b)t 

where a and b are probability amplitudes - complex numbers satisfying the normalization constraint 

                                           |a|2 + |b|2 =1                                                                           (1) 

|0› = (1,0)t  and  |1› = (0,1)t  are usually chosen as an orthonormal computational basis states.  This 
notation is convenient because it labels the basis vectors explicitly and gives the possibility to write 
out the physical quantities.  Therefore, in distinction from a bit, the qubit can exist in a 
superposition or linear combination of the basis states. This fact is fundamental to quantum 
computing. But we can’t determine a and b. The quantum state isn’t directly observable. 
Measurement of a state transforms the state into one of the basis vectors that are associated with the 
measuring device. The outcome of the measurement is the new state of the quantum system. 
Measurement of  |ψ› = a|0› + b|1›  gives us |0› with the probability |a|2 or |1› with the probability 
|b|2. It is impossible to get any additional information on a and b. By measurement of the qubit we 
get exactly one bit of information. 
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Operation on a qubit must preserve the property (1) and thus are described by 2×2 unitary 
matrices. Most important among these are the Pauli matrices (or operators). 
    There are several actual physical systems that can be used to realize the qubit: 

• |0› corresponds to the horizontally polarized photons |↔›; |1› corresponds to the vertically 
polarized photons |↕›. 

• Basis states of a qubit may be represented by the ground state and the first excited state of 
atomic energy levels. 

• Spin-1/2   particle such an electron, whose spin can have values  + ħ/2   or  − ħ/2,  where ħ 

is the reduced Plank constant (spin-up and spin-down as |0› and |1› accordingly).     
• Quantum dots – tiny semiconductor crystals – 2 to 10 nanometers in size.    

      The Bloch ball (named after Swiss physicist Felix Bloch (1905-1983)) is a geometric 
representation of qubit states. The normalization constraint allows to specify a qubit in a manner 
given below:  

|ψ› = eiγ ((cos θ/2) |0› + eiφ (sin θ/2) |1›),   0 ≤ θ ≤ π,   0 ≤ φ ≤ 2π.              

θ and φ are polar and azimuthal angles; eiγ is a global phase factor that does not have any physical 
meaning (or observable effects). Qubit states with different values of γ define the same point on the 
Bloch sphere. Therefore,  eiγ may be ignored and we can write  

|ψ› =  (cos θ/2,  eiφ sin θ/2)t 

 
II. PURE AND MIXED STATES 
The state of a quantum system represented by the unit vector |ψ› is called a pure state. It is 

also possible for a system to be in a statistical (or classical) ensemble of state vectors  

                                                         p |0› + (1 − p) |1›                                                      

where p is a probability that the state vector is |0› and (1− p) is a probability that the state vector is 
|1›. This system would be in a mixed state. A pure state is a special case of a mixed state in which p 
= 0 or p = 1. A mixed state is different from a quantum superposition of  |0› and  |1›. Quantum 
superposition of pure states is another pure state. 

Any real three-dimensional vector r with || r || = r ≤ 1 corresponds to a valid qubit state. Such 
a vector (the Bloch vector) is given by coordinates  
                                        r = ( r sin θ cos φ,  r sin θ sin φ, r cos θ ).                                 
Points on the surface (r = 1) represent the pure qubit states. Interior points (r < 1)  correspond to 
mixed states. The origin (r = 0 ) represents the fully (maximally) mixed state. 

The ensemble of quantum states can be described by the density matrix (or the density 
operator) as a weighted sum of outer (tensor) products           

ρ = p1 |ψ1› ‹ψ1| + … + pn |ψn› ‹ψn|,  

 0 ≤ pi ≤ 1, i = 1, … n,   p1 + … + pn = 1 

where pi is the probability of the pure state  |ψ i›. It is known that density matrix for a single qubit 
can be expressed as the sum of the identity matrix and Pauli matrices with real coefficients   bx,  by,  
bz : 

ρ = (1/2)(I + bxσx + byσy + bzσz)        

The density matrix must have a positive determinant. This condition involves an inequality 

|| b || 2  =  bx
2  + by

2 + bz
2 ≤ 1 
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where a vector b = (bx, by, bz) is the Bloch vector for the state ρ. 
The von Neumann entropy of a density matrix ρ is defined as 

                             S(ρ) = − tr ( ρ log ρ ) = − η1log η1 − … − ηn log ηn ,                               (2) 

where  tr denotes the trace;  η j  are eigenvalues of a matrix ρ  (see [4] p. 510). Eigenvalues can be 
calculated using a built-in MATLAB function eig( ).  

The von Neumann entropy has properties: 
• S(ρ) ≥ 0 and S(ρ) is zero if and only if ρ represents a pure state.                                         (3) 
• S(ρ) is maximal and equal to logd for a maximally mixed state, where d is the dimension of 

the Hilbert space.                                                                                                                 (4)    
Properties mentioned above gives us the ability to use the von Neumann entropy to characterize a 
mixedness of a qubit states. Another measure is so-called linear entropy that is defined as follows 

SL(ρ) = (d (d – 1)) (1− tr (ρ2 ) )      

 
III. ENTANGLEMENT 
Entanglement – the essence of quantum formalism - is a strange phenomenon that play an 

important role in the quantum information processing and is widely used in various branches of 
quantum theory. It was first discussed in works of Erwin Schrödinger [7], Albert Einstein, Boris 
Podolsky and Nathan Rosen [8]. Entanglement characterize a compound quantum system. 

The Hilbert space H associated with a bipartite system is a tensor product of the spaces 
associated with components  H = H1     H2.  A basis for the space H can be generated by the tensor 
products of basis vectors in  H1  and  H2. So, a general state of the two-qubit system is a linear 
combination 

|ψ› = α0 |00› + α1|01› + α2|10› + α3|11› 

where α0 , … , α3 are complex numbers,   α0
2 + … + α3

2 = 1, 

|00› = |0›     |0› = (1, 0, 0, 0)t ,   |01› = |0›     |1› = (0, 1, 0, 0)t ,     

                         |10› = |1›     |0› = (0, 0, 1, 0)t ,   |11› = |1›     |1› = (0, 0, 0, 1)t . 

By definition, a state |ψ› in H is said to be entangled or non-separable, if it cannot be written 
as a simple tensor product of a state |α› belonging to H1 and a state |β› belonging to H2. On the 
contrary, if we can write  |ψ› = |α›     |β›,  we say that the state |ψ› is separable. For simplicity’s sake 
we shall consider below only the case of a two-qubit system.  The Bloch sphere model for two qubit 
pure states is given in paper by Chu-Ryang Wie [9].  

 Let |ψ›AB ϵ HA     HB be a pure state of two qubits. If it is entangled, it may not be possible to 
factor out the state vector |ψ›A ϵ HA for the state of first qubit. However, it can be computed the 
reduced density operator ρA on HA , that describes the state |ψ›A as a mixed state (see [4] pp. 105-
106). According to the Schmidt decomposition theorem |ψ›AB can be written as ∑ j λj |ψj›A |ψj›B, 
where states are orthonormal,  λj > 0,   ∑ j λj

2 = 1,  the  λj
2  (squared Schmidt coefficients) are the 

eigenvalues of the ρA (see [4] pp. 109-111).       
The von Neumann entropy of reduced density matrix  

       e = S(ρA) = − tr ( ρA log ρA ) = − tr ( ρB log ρB ) = S(ρB) = − ∑ j λj
2 log λj

2                  (5) 

is a suitable measure of entanglement. When e = 0,  the state |ψ›AB is separable (nonentangled); the 
maximum value of entropy  e = log 2  we get, when eigenvalues are {1/2, 1/2} and the state in this 
case is maximally entangled. 
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IV. FUZZY SETS AND LINGUISTIC VARIABLES 
 In ordinary (classical, crisp) set theory any object belongs or does not belong to a given set - 

“tertium non datur” (logical law of excluded middle). 
In 1965 year Lotfi Aliasker Zadeh published a pioneering work on fuzzy sets [10]. He wrote: 

”More often than not the classes of objects encountered in the real physical world do not have 
precisely defined criteria of membership”. Here are some examples such classes (by Zadeh): 

• The class of all real numbers which are much greater than 1. 
• The class of beautiful women. 
• The class of tall men. 

The origins of fuzzy sets are described in the book by Witold Pedrycz and Fernando Gomide 
[11]. This book is a self-contained treatise on fuzzy sets. 

Formally, a fuzzy set A is described by a membership function μA(x) mapping the elements of 
universe X to the unit interval [0, 1].  

μA : X → [0, 1]. 

The membership functions are therefore synonymous of fuzzy sets.  
The Bloch ball as a generalized set of  “quantum truth values” is considered by Mirco A. 

Mannucci [12]. A quantum fuzzy subset of a set X is defined as a point in the space CP(X), where 
P(X) is 2|X|. A generic fuzzy set is seen as a (possibly entangled) superposition of many fuzzy sets at 
once, offering new opportunities for modeling ucertainty.   

Fuzzyfication of sets or notions is available using linguistic variables. By a linguistic variable 
we mean a variable whose values are words or sentences in a natural or artificial language [13], 
[14]. For example, possible values of a linguistic variable  Age are: very young, not very young, 
young, middle-aged, etc.  
 

V. LINGUSTIC VARIABLE FOR MIXEDNESS LEVELS 
We define a radius of the Bloch vector using (2) based on the properties (3) and (4) of the von 

Neumann entropy S(ρ) as follows            

                                                 r = 1 – S(ρ) = 1 + ∑ j  ηj log ηj                                                (6) 

The [0, 1] interval is divided into 7 parts: 

                                         [(i −1) /7, i / 7 ),  i = 1, 2, … 6,  [6/7, 1]                                      (7)                                                                                                           

Let us introduce the linguistic variable qubit-state. We link defined above subintervals to the 
values of the variable qubit-state (accordingly): 

1. fully or almost fully mixed state 
2.  near fully mixed state 
3.  strongly mixed state 
4.  moderately mixed state 
5.  weakly mixed state 
6.  near pure state 
7.  pure or almost pure state   

 
A hash function is a mathematical function that maps keys into integers. Below we define the 

Hash function, that for any value of radius r returns the label of the suitable subinterval.  
int Hash (double r)    // r is calculated using (6) 
  {  
        if  (r < 0 | | r > 1)  
              return −1;     // indicates error 
       for ( int i = 1;  i ≤ 6;  i ++ )                  



GESJ: Computer Science and Telecommunications 2017|No.2(52) 
ISSN 1512-1232 

    34 

               if  ((i −1) / 7 ≤  r < i  / 7 ) 
                   return i;   
       return 7; 
  } 
We will use the return value of Hash function in C++  switch statement. 
 

The function that converts double data type into string data type 
string conDtoS (double d) 
   { 
      stringstream ss; 
      ss << d; 
      string degs = ss.str(); 
      return degs; 
   } 
      
     Before calling this function in C++ program must be included header files <iostream>, 
<sstream>, <string>, using namespace std. conDtoS( ) procedure is needed to include the degree of 
membership into the value of linguistic variable using a string concatenation. 

 
 
The transformation of Hash function return values into values of the linguistic variable 
 

int h = Hash(r); 
string qubit-state, qubit-state1; 
string st = “qubit state is”; 
string st1 = “of degree”; 
int  k = 7π / 2 ;        // shrinkage multiplier for cos(x) 
double  deg; 
switch (h) { 
            case 1: 
                    qubit-state = “fully or almost fully mixed”; 
                    deg =  cos (kr); 
                    degstr = conDtoS(deg); 
                    qubit-state1 = st+qubit-state + st1 + degstr; 
                    break;     
            case 2:  
                    qubit-state = “near fully  mixed”; 
                    deg = cos k(r – 3/14);   // shrinkage and displacement 
                    degstr = conDtoS(deg); 
                    qubit-state1 =st+ qubit-state + st1+ degstr; 
                    break;     
            case 3: 
                    qubit-state = “strongly mixed”; 
                    deg =   cos k(r – 5/14);     

                    degstr = conDtoS(deg); 
                    qubit-state1 =st+qubit-state +st1 + degstr; 
                    break;     
            case 4: 
                    qubit-state = “moderately mixed”; 
                    deg =  cos k(r – 1/2);       
                    degstr = conDtoS(deg); 
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                    qubit-state1 =st+qubit-state +st1+ degstr; 
                    break;      
            case 5: 
                    qubit-state = “weakly mixed”; 
                    deg =  cos k(r – 9/14);      
                    degstr = conDtoS(deg); 
                    qubit-state1 =st+ qubit-state + st1+ degstr; 
                    break;      
            case 6: 
                    qubit-state = “near pure state”; 
                    deg =  cos k(r – 11/14);       
                    degstr = conDtoS(deg); 
                    qubit-state1 =st+ qubit-state + st1+ degstr; 
                    break; 
              case 7: 
                    qubit-state = “pure or almost pure”; 
                    deg = cos k(r – 1);        
                    degstr = conDtoS(deg); 
                    qubit-state1 = st+qubit-state + st1+ degstr; 
                    break;    
     } 

For example, the possible value of the linguistic variable qubit-state1 may be: “qubit state is 
strongly mixed of degree 0.85”. 

 
VI. LINGUISTIC VARIABLE FOR ENTANGLEMENT LEVELS 
To construct the linguistic variable for entanglement levels of the two qubit system 

pure states we shall use the same scheme as in previous section with some changes. 
As a parameter in Hash function we take a value of a variable  e, that is calculated 

according to (5). 
We link subintervals (7) to the values of the linguistic variable two-qubit-state (accordingly): 

1. separable or almost separable 
2. near separable 
3. weakly entangled 
4. moderately entangled 
5. strongly entangled 
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6. near maximally entangled 
7. maximally or almost maximally entangled.  

VII. CONCLUSION 
Peter W. Shor mentioned:  “…my belief is that any new techniques have the potential 

to be great value in further exploration of quantum algorithms…” [15]. 
A discussion on quantum events often has the probabilistic nature. When we cannot 

describe precisely the state before a measurement or an outcome of a measurement, it is 
justified to use a fuzzy reasoning. The linguistic variables suggested in this article can be 
used in such cases. 
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