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Abstract: For the first time, fcc structured ferromagnetic thin films with two spin layers
are described using fourth order perturbed Heisenberg Hamiltonian. Magnetic energy
per unit spin was expressed in terms of spin exchange interaction and second order
anisotropy constants in two spin layers. All the peaks are closely packed in the graphs
plotted using fourth order perturbed Heisenberg Hamiltonian compared to peaks in the
graphs plotted using third order perturbed Heisenberg Hamiltonian. 3-D plots of
energy versus angle and each energy parameter were plotted. Peaks are periodically
distributed only in the 3-D graph of energy versus angle and second order anisotropy
constant of top spin layer. The magnetic energy increases when the value of second
order anisotropy constant in bottom spin layer increases. In addition, the magnetic
energy does not change considerably when the values of second order anisotropy
constants of two spin layers are interchanged.
Keywords: Heisenberg Hamiltonian, fourth order perturbation, magnetic thin films,
spin

1. Introduction:

Although magnetic properties of thin films have been previously described using second and
third order perturbed Heisenberg Hamiltonian, Heisenberg Hamiltonian has never been developed
up to fourth order perturbation. Not only Heisenberg Hamiltonian, but also some other models have
been applied to explain magnetic properties of thin films. Ferromagnetic films find potential
applications in magnetic memory devices and microwave devices. Magnetic thin films are
employed in miniature magnetic devices. Magnetic easy axis oriented films provide the same
magnetic properties as bulk magnetic materials. Energy density of magnetic easy axis oriented films
is almost same as that of bulk magnetic materials. However, the detailed theoretical studies related
to the easy axis orientation are limited. The quasistatic magnetic hysteresis of ferromagnetic thin
films grown on a vicinal substrate has been theoretically explored using Monte Carlo simulations
[1]. Structural and magnetic properties of two dimensional FeCo ordered alloys have been
investigated by first principles band structure theory [2]. EuTe films with surface elastic stresses
have been theoretically studied using Heisenberg Hamiltonian [3]. De Vries theory was employed
to explain the magnetostriction of dc magnetron sputtered FeTaN thin films [4]. Magnetic layers of
Ni on Cu have been theoretically investigated using the Korringa-Kohn-Rostoker Green’s function
method [5]. Electric and magnetic properties of multiferroic thin films have been theoretically
described using modified Heisenberg model and transverse Ising model coupled with Green’s
function technique [6].

The interfacial coupling dependence of the magnetic ordering in ferro-antiferromagntic bilayers
has been studied using the Heisenberg Hamiltonian [7]. Heisenberg Hamiltonian incorporated with
spin exchange interaction, magnetic dipole interaction, applied magnetic field, second and fourth
order magnetic anisotropy terms has been solved for ferromagnetic thin films [8, 9, 10]. The
domain structure and Magnetization reversal in thin magnetic films was described using computer
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simulations [11]. Heisenberg Hamiltonian has been employed to theoretically describe in-plane
dipole coupling anisotropy of a square ferromagnetic Heisenberg monolayer [12].
Previously magnetic thin films have been fabricated using sputtering and pulse laser deposition
techniques by us [13-15]. According to our experimental studies, some magnetic energy parameters
were found to be important in the control of magnetic easy axis orientation. Ferrite films have been
explained using second order perturbed Heisenberg Hamiltonian by us [16, 17]. In addition,
Heisenberg Hamiltonian was employed to describe the variation of magnetic easy axis orientation
of experimentally deposited magnetic thin films with temperature [18-20]. Second and third order
perturbed Heisenberg Hamiltonian was applied to explain the ferromagnetic films by us [21, 22].
Unperturbed Heisenberg Hamiltonian was applied to describe ferrite thin films [23]. Magnetic
properties of ferrite films have been elucidated using and third order perturbed Heisenberg
Hamiltonian by us [24]. Magnetostatic energy of domains and domain walls has been theoretically
investigated as a function of film thickness [25]. Magnetic thin films with thicknesses ranging from
2 to 4 layers have been modeled using anisotropic classical Heisenberg spins under the influence of
mechanical uniaxial stresses [26]. Monte carlo simulation has been employed to study magnetic
properties of very thin films with bcc lattice [27]. The properties of thin films made of stacked
triangular layers of atoms bearing Heisenberg spins with an Ising like interaction anisotropy have
been investigated using extensive Monte Carlo simulations and analytical Green’s function [28]. A
Green’s function technique is applied for the Heisenberg model to study the influence of the
magnetic surface single ion anisotropy on the spin wave spectrum including damping effects in
ferromagnetic thin films [29].

2. Model:

Classical Heisenberg Hamiltonian of ferromagnetic thin films with spin exchange interaction,
long range dipole interaction and second order magnetic anisotropy can be conveyed as [16-24].
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After taking the dot products of vectors, this equation can be deduced to following form for a unit

spin [16-24]
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Where m and n indicate indices of two different spin layers, N exhibits the number of layers
measured in direction perpendicular to the film plane, J is the magnetic spin exchange interaction,

nmZ  stands for the number of nearest spin neighbors, represents the strength of long range

dipole interaction, nm are constants for partial summation of dipole interaction, For non-oriented

films, above angles m and n measured with film normal can be expressed in forms of mm  
and nn   , and cosine and sine terms can be expanded up to the fourth order of  as following.
For a ferromagnetic thin film with only two spin layers, N changes from 1 to 2.
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First order perturbation term can be expressed in terms of a row and a column matrices with two

terms in each as following.
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Here terms of  are given by   )2(
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Second order perturbation term can be rendered in terms of a two by two matrix, a row matrix and a
column matrix as following.
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Third order perturbation can be expressed in terms of a two by two matrix, a row matrix and a
column matrix as following.
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Fourth order perturbation can be rendered in terms of two by two matrices, row matrices and
column matrices as following.
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For the minimum energy of the second order perturbed term [21, 22],
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Here C+ is the pseudo inverse of matrix C, and C+ can be found using

N
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Here E is the matrix with all elements given by Emn=1.

3. Results and discussion:

Because the simulations will be performed for films with two spin layers, N = 2. From equation 6,
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1 and 2 can be found using above equation (5). After substituting  in equation 4, total energy can
be found.
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All the simulations will be done for a film which has two different magnetic anisotropy constants

( )2(
2

)2(
1 DD  ) in two spin layers.

The simulations will be carried out for face centered cubic (fcc) structured ferromagnetic films with
two spin layers. For fcc(001) lattice, Z0=4, Z1=4 ,Z2=0 and 4294.1,0336.9 10  [8-10]. 3-D
plot of energy versus angle and spin exchange interaction is given in figure 1. Here other

parameters are fixed at 100
)2(

1 

D

and 5
)2(

2 

D

. The peaks along the direction of angle are

closely packed compared to second and third order perturbed cases [16, 17, 21, 22, 24]. The cross
section of this 3-D plot at one particular angle is given at figure 2. By rotating 3-D plot in figure 1,

figure 2 can be obtained. Energy minimum can be observed at

J
= 7, 12, 32, 45, --- etc. Energy in

these graphs is in the range of 1013. However, the energy obtained using third order perturbed
Heisenberg Hamiltonian was in the range from 1016 to 1019 [22]. It implies that the energy slightly
reduces due to the fourth order perturbation.
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Figure 1: 3-D plot of energy versus angle and spin exchange interaction for 100
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Figure 2: Graph of energy versus spin exchange interaction.
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Figure 3 shows the 3-D plot of energy versus angle and spin exchange interaction for

10000
)2(

1 

D

and 5
)2(

2 

D

. Several peaks can be observed in all the graphs. However, the gap

between two peaks is not a constant. The major minimum observed at about

J

= 45 in figure 1 has

been shifted to about

J

= 15 in figure 3. In addition, the magnetic energy increases from 1013 to

1030 when the value of second order anisotropy constant in bottom spin layer increases. Energy

minimum in this case can be observed at

J

= 8, 15, 33, 38, --- etc. The energy of ferromagnetic

thin films found using third order perturbed Heisenberg Hamiltonian was in the range of 1016 to
1019 [22].

0
20

40
60

80
100

0

50

100
-2.5

-2

-1.5

-1

-0.5

0

0.5

x 1030

J/angle (radians)

E
(

)/

Figure 3: 3-D plot of energy versus angle and spin exchange interaction for 10000
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The 3-D plot of energy versus angle and spin exchange interaction for 5
)2(

1 

D

and 100
)2(

2 

D

is given in figure 4. The ratios between any two energy parameters are dimensionless. The major

energy minima appears at

J

= 59 in this case. When second order anisotropy constant in top spin

layer is higher than that of bottom spin layer, the major energy minimum shifts to a higher value of
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
J
. However, the magnetic energy does not change considerably when the second order anisotropy

constants of two spin layers are switched as given in figures 1 and 4. Energy minima can be

observed at

J

= 8, 22, 27, 36, 39, 59, ---- etc.
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Figure 4: 3-D plot of energy versus angle and spin exchange interaction for 5
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
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Figure 5 represents 3-D plot of energy versus angle and second order anisotropy constant of bottom

spin layer. Here other parameters were fixed at 5
)2(

2 

D

and

J

= 10. The energy varies in the

range of 1025 in this case. Energy minima can be observed at 


)2(
1D 4, 8, 12, 16, ----- etc. Energy

peaks along the axis of angle are closely packed. The peaks in the same 3-D graphs plotted using

third order perturbed Heisenberg Hamiltonian were widely separated [22].
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Figure 5: 3-D plot of energy versus angle and second order anisotropy constant of bottom spin layer

for 5
)2(

2 
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and

J

= 10.

Figure 6 represents the 3-D plot of magnetic energy versus angle and second order anisotropy

constant of top spin layer. The other values were fixed at

J

= 10 and 


)2(
1D 10. Magnetic

energy varies in the range of 1029. Energy minima can be seen at 


)2(
2D 6, 9, 14, 18, ----etc.

Energy maxima can be seen at 


)2(
2D 3, 8, 12, 16, --- etc. Unlike the previous graphs, the peaks

are periodically distributed in this case.
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Figure 6: 3-D plot of magnetic energy versus angle and second order anisotropy constant of top spin

layer for

J

= 10 and 


)2(
1D 10.

4. Conclusion:
Peaks of all the graphs plotted using fourth order perturbed Heisenberg Hamiltonian are closely
packed compared to the graphs plotted using third and second order perturbation Heisenberg
Hamiltonian. Adding more terms reduces the space between peaks. Energy minimum can be

observed at

J
= 7, 12, 32, 45, --- for 100

)2(
1 

D

and 5
)2(

2 

D

. Energy minimum can be found

at

J

= 8, 15, 33, 38, --- for 10000
)2(

1 

D

and 5
)2(

2 

D

. Energy maxima can be seen at




)2(
2D 3, 8, 12, 16, --- for


J

= 10 and 


)2(
1D 10. Peaks are periodically distributed only in one

graph. Although the simulations have been performed for some selected values in this manuscript,
the same simulation can be carried out for any values of these energy parameters.
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