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ABSTRACT  .   The contribution of any shape vortex line to the
angular  momentum  of  the  liquid  confined  to  the  axially
symmetric vessel is considered. The general formulae, which do
not  require  the  knowledge  of  the  velocity  distribution  of  the
liquid, are received (only the shape and disposition of vortex and
wall are enough).

1.INTRODUCTION

The  contribution  r v dV 
r r

of  each  element  dV  is  to  be
integrated  over  the  volume V of  a  liquid  to  determine  its  angular
momentum L

r
 ( is the density, and v  is the velocity). The existence

of a vortex line causes the inversely proportional dependence of the
velocity on the distance from this line. Because of it the contribution
of the remote part of a liquid to angular momentum is more sufficient
than  the  contribution  of  the  vortex  core  though in  its  vicinity  the
velocity tends to infinity (the product  r  is  finite as well as in far
areas,  where  the  velocity  tends  to  zero).  That  is  why  the  angular
momentum cannot be determined by rough but simple and effective
estimations with a weak dependence on the form of wall and of the
distance  to  it   (such  estimations  are  possible  and  widely  used  for
energy of the vortex in hydrodynamics of superfluid He II [1],  see
also [2].

During the derivation of the formula of critical velocity of the first
vortex generation Vinen [3] obtained the following expression of the
angular momentum of the vortex, which is disposed along the axis of
a cylinder:
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             21L R H
2

  ,                                              (1)

where  H  is the height of the cylinder,  R  is its radius, and    is a
circulation, which was quantized in Vinen's paper, as well as in [4-7]
mentioned below, in the units of  2 / mh  ( m  is the mass of helium
atom). But the structure of the vortex core (the size of this formation
is of order of 3 0

A ) is neglected as if the incompressible liquid was
considered. The same approximation is exploited in this paper (if one
has in mind the superfluid component of He II denotations   and 
must be substituted by s  and 2 / mh ).

The interaction in the incompressible liquid spreads in a moment.
Because of this three following expressions of angular momentum are
received also in the hydrodynamics of superfluid liquid. Namely, if a
vortex is disposed parallel to the axis of a cylinder on the distance vr
from this axis being parallel to it then [4,5]:

           22
v

1L R r H
2

   .                                    (2) 

If  a  vortex  is  disposed  along the  axis  of  rotation  of  a  sphere  (its
diameter), then [6]:

                                           32L R
3

  ,

(3)

where R  is the radius of the sphere. If a vortex is disposed along the
axis of rotation of two concentric spheres with radii 1 2R ,R , then [7]:

                    3 3
2 1

2L R R
3

   .                                     (4)
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Eqs. (1,3,4) were received by the direct integration of r v2 rdr   with
v / 2 r   . In the case of a displaced vortex its image must be taken
into account, and the integration is complicated. 

We  would  not  be  surprised  if  in  classical  hydrodynamics  the
formulae exist, which determine the angular momentum of a vortex in
some other geometry, but we had not seen them in the textbooks. May
be the point is that in the classical physics the ideal liquid is treated as
the excessive idealization of the properties of real liquid. In the real
liquid the core of a vortex diffuses. Unlike this situation the vortex
filaments in He II are stable and attract more attention. 

In  several  works  are  calculated  the  angular  moments  of  many
vortex  arrays  formed  in  rotating  He  II  (both  in  cylindrical  and
spherical  geometry).  But in this  paper we are  interesed only in the
angular momentum of a single vortex. Just this problem is connected
with some aspects of vortex dynamics including the ones connected
with pulsar quakes.   

2. THE ANGULAR MOMENTUM OF ANY SHAPE VORTEX
LINE CONFINED TO THE AXIALLY SYMMETRIC VESSEL

     
The main restrictions in the following derivation of Eq. (6) is that

the  vessel  has  an  axially  symmetry  (its  wall  is  the  surface  of
revolution), and the vortex is supposed to be on one plane with the z -
axis of liquid rotation (Fig.1). The equation of the wall is  wr r (z) ,
the equation of the vortex line is vr r (z) (the cylindrical coordinates
r,  ,  z  are used),  and both these dependencies  are  supposed to be
single-valued. The possible generalizations see in Sec.5. 

In such conditions the integral mentioned above in the beginning
of Sec.1 may be written down as:

                          
max w

min

z r (z) 2

z
z 0 0

L L dz dr v rd


      ,                         (5)

rL L 0   under the supposed conditions.
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The last integral in Eq. (5) is the circulation around the z -axis. It
is  zero if  there is no vortex in the circle  with the radius  r  on the
height  z ,  and it  is  equal  to  const   if  there  is  a  vortex in such
circle. Therefore 

                              

Fig.1. The section of the axially symmetric vessel with a vortex on it.
   The surface outlined by the vortex and the wall is shaded.

 
max

min

z
2 2
w v

z

1L r r dz
2

   ,                                   (6)

where minz  and maxz  are the limits of the vortex disposition. One can
exploit  this  equation  without  necessity  to  determine  the  velocity
distribution in the vessel.
     The known formulae (Eqs. (1-4)) may be received from Eq. (6).
Using this equation it is easy to get the result for the case where the
vortex is disposed on the distance vr  from the axis of rotation of the
sphere, being parallel to this axis:
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                             3 / 22 2
v

2L R r
3

   .                                 (7)

3. IMPULSE IN THE SENSE OF KELVIN AND THE
ANGULAR MOMENTUM

The impulse in the Kelvin's sense  differs  on principle  from the
momentum [8-10].  It  is  so  because  the  transfer  of  the  momentum
which is necessary to set unmoving liquid in the state of given motion
(just this is the impulse in the sense of Kelvin) is accompanied by the
action  of  walls  which  can  sufficiently  change  the  momentum of  a
liquid. In the case of angular momentum the similar situation is less
necessary because the action of walls to change the direction of the
rotating liquid flow is  centripetal  and does  not  change the angular
momentum. E.g. let us consider the cases shown in Fig.2. A liquid is
rotating  around  the  vortex  disposed  along  the  axis  of  cylinder  or
parallel  to  it.  To  create  such a  motion  one must  do a push on the
shaded surface in the direction perpendicular to this figure plane. The
following centripetal action of walls is oriented radial, and the angular
momentum oriented along z -axis remains unchanged.
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            and parallel to it. The surface which must be pushed to create
            the considered motion of liquid is shaded.

In  general  case  shown  in  Fig.1  the  Kelvin's  impulse  is  also
expressed by the shaded surface [4]:

                                       Kp S  ,                                                  (8)

where  S  is the magnitude of the surface limited by the vortex and
walls.  It  is  reasonable  to  think that  the  angular  momentum can be
calculated as the product of the Kelvin's impulse on the radius vector

cR of the center of this surface:

                   c KL R p .                                                (9)

All preceding formulae for L  confirm our proposition. Namely, if the
vortex is disposed along the axis of a cylinder then  cR R / 2 , and

Kp RH  .  Their  product  gives  Eq.  (1).  If  a  vortex  is  disposed
parallel  to  the  axis  of  rotation  of  the  cylinder  then

c v v v K vR r (R r ) / 2 (R r ) / 2,p (R r )H        ,  and  their
product  gives  Eq.  (2).  If  the  vortex  is  disposed  along  the  axis  of
sphere then 2

c KR 4R / 3 ,p R / 2    , and their product gives Eq.
(3). If the vortex is disposed along the axis of two concentric spheres
then     3 3 2 2

c 2 1 2 1R 4 R R / 3 R R ,      2 2
K 2 1p R R / 2   ,  and

their product gives Eq. (4).
Let us prove the equivalence of Eqs. (9) and (6). The center of the

imaginary surface which one pushes to create a given motion is on the
following distance from the z -axis:

max

min

r

c
r

rdS 1R zrdr
dS S

  
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( min maxr , r  are the minimal and the maximal distances of the surface
S  from the axis of rotation).
     According to Eqs. (8,9) we obtain:    
              

                      
max

min

r

r
L zrdr   .                                     (10)

On the other hand
max

min

r
2

r

1zrdr zdr
2

  С .

The last integral must be taken along the boundary of the surface S in
the positive direction of revolution. Substituting Eqs. (8,10) in Eq. (9)
we obtain:

                     21L zdr
2

   С .                                    (11)

Eq. (6) may be also transformed in the integral about the same path
that gives another expression of L :

                
max

min

z
2 2 2

w v
z

(r r )dz r dz  С ,                              (12)

21L r dz
2

  С .                                  (13)

The  equivalence  of  Eqs.  (11,13)  means  the  equivalence  of  Eqs.
(6,9,10). We have obtained these formulae for conditions determined
in Sec.2.  However some generalizations, described in the following
section,  provide  the  possibility  to  use  our  general  equations  (Eqs.
(6,9-11,13)) for actually any shape vortex line.

4. GENERALIZATIONS 
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The simplest generalization, which can be made as compared with

Fig.1,  is  the  case  where  a  vortex  is  placed  between  the  wall  and
another  (also  axially  symmetric)  body.  Our  general  formulae (Eqs.
(6,9-11,13))  may be directly exploited in this case.  E.g. so may be
received Eq. (4) and the following expression for the case where a
vortex is disposed between two coaxial cylinders parallel to the axis
of  their  rotation.  In  this  doubly  connected  area  the  existence  of  a
circulation 1  is possible on the surface of inner cylinder which gives
the additional contribution to the angular momentum. Together with
the contribution of a vortex it implies:

              2 2 2 2
1 2 1 2 vL R R R r      .                          (14)

If a vortex is disposed between two concentric spheres parallel to
the axis of their rotation, and the edges of a vortex are placed on the
surfaces of both spheres ( v 1r R ) then:

    3 / 2 3 / 22 2 2 2
2 v 1 v

2L R r R r
3

       
,                  (15)

and if the edges of a vortex are placed on the surface only of the outer
sphere v 1r R  then (cf. Eq. (7)):

             3 / 22 2
2 v

2L R r
3

   .                                (16)

We would like to note that in doubly connected area between two
cylinders a circulation 1 on the surface of inner cylinder is possible
independently from the fact  if a vortex exists  or not.  In the simply
connected area between two spheres a circulation on the surface of
the inner sphere is possible only if it is caused, according the Stokes
theorem, by a vortex that pierces the sphere.
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If  the  functions  r(z)  which describe  walls  or  a  vortex  are  not
single-valued  then  one  must  divide  the  curves  v wr , r  into  several
single-valued  parts  and  Eq.  (6)  would  be  replaced  by  the  sum of
several integrals with the own min maxz ,z and min maxr , r . The values of
these integrals depend on the absence or existence of a circulation and
its sign in the interval considered. In similar way one must deal with
Eq. (10) if the dependence  z(r)  is not single valued. Eqs. (9,11,13)
may be used without any changes.

If  z -axis divides the shaded area into two parts,  then their  Kp
have opposite signs. But corresponding  cR also have opposite signs.
Therefore the sum of two products K cp R  will appear in Eq. (9). Eqs.
(6,11,13) may be used without any changes.

Now let us consider the closed vortex, which has no contact with
walls. If we increase the radius of circumference around the axis of
rotation, then the part of the vortex, which is on the distance minr (z)
from the axis, enters in this circumference earlier than the other ones.
This part contributes in Eq. (6)  nonzero    until  the  part of vortex
with  maxr (z)  and  with  circulation   enters.  The  contribution  of
circulation in Eq.  (5)  for  max wr r r   is  zero.  Eq. (6) is  valid  but

v wr , r  must be substituted by  min maxr , r .  Eqs. (9,11,13) may be used
without any changes. It is right also in the case where the axis divides
the closed vortex in two parts. But, in this case, in Eq. (9) the product

K cp R  must be substituted by the sum of such products. 

 5. SUMMARY

The  momentary  shape  and  disposition  of  a  vortex  and  walls
completely determine the angular momentum of a liquid at the same
moment  (let  us  remind  that  the  interaction  in  the  incompressible
liquid spreads in a moment). The motion of a vortex and its stability is
not considered in this paper. Eqs. (6,9-11,13) only imply the angular
momentum corresponding to  definite  configuration  of a vortex  and
walls.
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Ë. ÊÉÊÍÀÞÄ, É. ÌÀÌÀËÀÞÄ

ÍÄÁÉÓÌÉÄÒÉ ×ÏÒÌÉÓ ÂÒÉÂÀËÉÈ ÂÀÍÐÉÒÏÁÄÁÖËÉ
ÌÏÞÒÀÏÁÉÓ ÒÀÏÃÄÍÏÁÉÓ ÌÏÌÄÍÔÉ

ÃÀÓÊÅÍÀ

ÂÒÉÂÀËÉÈ ÂÀÍÐÉÒÏÁÄÁÖËÉ ÌÏÞÒÀÏÁÉÓ  ÒÀÏÃÄÍÏÁÉÓ  ÌÏÌÄÍ-
ÔÉÓÀÈÅÉÓ ÝÍÏÁÉËÉÀ  ÌáÏËÏÃ ÒÀÌÃÄÍÉÌÄ ×ÏÒÌÖËÀ (ÀÌ ÓÔÀÔÉÉÓ
(1-4)). ÄÓ ×ÏÒÌÖËÄÁÉ (ÂÀÒÃÀ (2)-ÉÓÀ), ÂÀÌÏÉÚÄÍÄÁÀ ÉÌ ÛÄÌÈáÅÄ-
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ÅÄÁÉÓÀÈÅÉÓ, ÒÏÃÄÓÀÝ ÂÒÉÂÀËÉ ÌÁÒÖÍÀÅÉ àÖÒàËÉÓ ÙÄÒÞÆÄÀ ÂÀÍ-
ËÀÂÄÁÖËÉ. ÀÌÉÓ ÌÉÆÄÆÉ, ÀËÁÀÈ, ÀÒÉÓ ÉÓ, ÒÏÌ, ÈÖ ÂÒÉÂÀËÉ ÙÄÒ-
ÞÆÄ ÀÒÀÀ ÌÏÈÀÅÓÄÁÖËÉ, ÞÍÄËÃÄÁÀ ÓÉÜØÀÒÄÈÀ ÂÀÍÀßÉËÄÁÉÓ ÂÀÍ-
ÓÀÆÙÅÒÀ ÃÀ ÉÍÔÄÂÒÄÁÀ. ÀÌ ÓÔÀÔÉÀÛÉ ÌÉÙÄÁÖËÉÀ ÌÏÞÒÀÏÁÉÓ ÒÀÏ-
ÃÄÍÏÁÉÓ ÌÏÌÄÍÔÉÓ ÂÀÌÏÓÀÈÅËÄËÉ ×ÏÒÌÖËÄÁÉ (6) ÃÀ (10), ÒÏÌ-
ËÄÁÉÝ ÀÒ ÌÏÉÈáÏÅÓ ÓÉÜØÀÒÄÈÀ ÂÀÍÀßÉËÄÁÉÓ ÝÏÃÍÀÓ.  ÓÀàÉÒÏÀ
ÅÉÝÏÃÄÈ  ÌáÏËÏÃ  ÂÒÉÂÀËÉÓÀ  ÃÀ  ÊÄÃËÉÓ  ×ÏÒÌÀ  (ÂÒÉÂÀËÉÓ
×ÏÒÌÀ ÍÄÁÉÓÌÉÄÒÉÀ, ÊÄÃÄËÉÓÀ ÊÉ - ÁÒÖÍÅÉÓ ÍÄÁÉÓÌÉÄÒÉ ÆÄÃÀÐÉ-
ÒÉ). ÌÉÙÄÁÖËÉÀ, ÀÂÒÄÈÅÄ, ÀÌÀÅÄ ÐÉÒÏÁÄÁÛÉ ÓÀÌÀÒÈËÉÀÍÉ ×ÏÒ-
ÌÖËÀ (9), ÒÏÌÄËÛÉÀÝ ÂÀÌÏÚÄÍÄÁÖËÉÀ ÊÄËÅÉÍÉÓ ÀÆÒÉÈ ÉÌÐÖËÓÉÓ
ÝÍÄÁÀ. ÝÍÏÁÉËÉÀ, ÒÏÌ ÄÓ ÉÌÐÖËÓÉ ÛÄÉÞËÄÁÀ ÞÀËÉÀÍ ÀÒÓÄÁÉÈÀÃ
ÂÀÍÓáÅÀÅÃÄÁÏÃÄÓ ÌÏÞÒÀÏÁÉÓ ÒÀÏÃÄÍÏÁÉÓÀÂÀÍ, ÌÀÂÒÀÌ ÀØ ÍÀÜÅÄ-
ÍÄÁÉÀ, ÒÏÌ ÀÙßÄÒÉË ÐÉÒÏÁÄÁÛÉ ÉÂÉ ÉÞËÄÅÀ ÌÏÞÒÀÏÁÉÓ ÒÀÏÃÄ-
ÍÏÁÉÓ ÌÏÌÄÍÔÉÓ ÓßÏÒ ÌÍÉÛÅÍÄËÏÁÀÓ. ÊÉÃÄÅ ÏÒÉ ÆÏÂÀÃÉ ×ÏÒÌÖ-
ËÀ (11,13) ßÀÒÌÏÂÅÉÃÂÄÍÓ ÓÀÞÉÄÁÄË ÓÉÃÉÃÄÓ ßÉÒÉÈÉ ÉÍÔÄÂÒÀ-
ËÄÁÉÓ ÓÀáÉÈ, ÒÏÌËÄÁÉÝ ÂÀÌÏÉÈÅËÄÁÀ ÛÄÊÒÖËÉ ÂÒÉÂÀËÉÓ ÌÉÄÒ
ÀÍ ÂÒÉÂÀËÉÓÀ ÃÀ ÊÄÃËÉÓ ÌÉÄÒ ÛÄÌÏßÄÒÉË ÊÏÍÔÖÒÄÁÆÄ. áÖÈÉÅÄ
ÆÏÂÀÃÉ ×ÏÒÌÖËÀ ÌÏÉÝÀÅÓ ÃÙÄÌÃÄ ÝÍÏÁÉË ×ÏÒÌÖËÄÁÓ (1-4) ÃÀ
ÉÞËÄÅÀ ÓáÅÀ ÊÄÒÞÏ ÛÄÌÈáÅÄÅÄÁÉÓ ÂÀÍáÉËÅÉÓ ÓÀÛÖÀËÄÁÀÓ (×ÏÒ-
ÌÖËÄÁÉ (7,14-16)).       
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