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ABSTRACT. The contribution of any shape vortex line to the
angular momentum of the liquid confined to the axially
symmetric vessel is considered. The general formulae, which do
not require the knowledge of the velocity distribution of the
liquid, are received (only the shape and disposition of vortex and
wall are enough).

1.INTRODUCTION

The contribution ©xVvpdVof each element pdV is to be
integrated over the volumeV of a liquid to determine its angular
momentum i (Pis the density, and V is the velocity). The existence
of a vortex line causes the inversely proportional dependence of the
velocity on the distance from this line. Because of it the contribution
of the remote part of a liquid to angular momentum is more sufficient
than the contribution of the vortex core though in its vicinity the
velocity tends to infinity (the product rv is finite as well as in far
areas, where the velocity tends to zero). That is why the angular
momentum cannot be determined by rough but simple and effective
estimations with a weak dependence on the form of wall and of the
distance to it (such estimations are possible and widely used for
energy of the vortex in hydrodynamics of superfluid He II [1], see
also [2].

During the derivation of the formula of critical velocity of the first
vortex generation Vinen [3] obtained the following expression of the
angular momentum of the vortex, which is disposed along the axis of
a cylinder:
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LzéprzH, (1)

where H is the height of the cylinder, R is its radius, and T" is a
circulation, which was quantized in Vinen's paper, as well as in [4-7]
mentioned below, in the units of 2th/m (m is the mass of helium
atom). But the structure of the vortex core (the size of this formation
is of order of 3&) is neglected as if the incompressible liquid was
considered. The same approximation is exploited in this paper (if one
has in mind the superfluid component of He II denotations P and T
must be substituted by p; and 27h/m).

The interaction in the incompressible liquid spreads in a moment.
Because of this three following expressions of angular momentum are
received also in the hydrodynamics of superfluid liquid. Namely, if a

vortex is disposed parallel to the axis of a cylinder on the distance r,
from this axis being parallel to it then [4,5]:

L:%pF(RZ—rZ)H. )

v

If a vortex is disposed along the axis of rotation of a sphere (its
diameter), then [6]:

L=§pl’R3,

where R is the radius of the sphere. If a vortex is disposed along the
axis of rotation of two concentric spheres with radii R,R,, then [7]:

L %pF(R; —Rf). (4)
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Egs. (1,3,4) were received by the direct integration of rpv2nrdr with
v=I/2nr. In the case of a displaced vortex its image must be taken
into account, and the integration is complicated.

We would not be surprised if in classical hydrodynamics the
formulae exist, which determine the angular momentum of a vortex in
some other geometry, but we had not seen them in the textbooks. May
be the point is that in the classical physics the ideal liquid is treated as
the excessive idealization of the properties of real liquid. In the real
liquid the core of a vortex diffuses. Unlike this situation the vortex
filaments in He II are stable and attract more attention.

In several works are calculated the angular moments of many
vortex arrays formed in rotating He II (both in cylindrical and
spherical geometry). But in this paper we are interesed only in the
angular momentum of a single vortex. Just this problem is connected
with some aspects of vortex dynamics including the ones connected
with pulsar quakes.

2. THE ANGULAR MOMENTUM OF ANY SHAPE VORTEX
LINE CONFINED TO THE AXIALLY SYMMETRIC VESSEL

The main restrictions in the following derivation of Eq. (6) is that
the vessel has an axially symmetry (its wall is the surface of
revolution), and the vortex is supposed to be on one plane with the z -

axis of liquid rotation (Fig.1). The equation of the wall is r=r,(z),

the equation of the vortex line is r=r,(2) (the cylindrical coordinates
I, &, z are used), and both these dependencies are supposed to be
single-valued. The possible generalizations see in Sec.5.

In such conditions the integral mentioned above in the beginning
of Sec.1 may be written down as:

Z max rw(Z) 2n
LZ=L=pI dz .[ dr.fvardoc’ (5)
Z 0 0

min

L, =L, =0 under the supposed conditions.
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The last integral in Eq. (5) is the circulation around the Z -axis. It
is zero if there is no vortex in the circle with the radius r on the
height z, and it is equal to I'=const if there is a vortex in such
circle. Therefore
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Fig.1. The section of the axially symmetric vessel with a vortex on it.
The surface outlined by the vortex and the wall is shaded.

1 Zmax 2 2
L=_pl | (rw_rv)dz, (6)
Zmin
where Z;, and z,,, are the limits of the vortex disposition. One can

exploit this equation without necessity to determine the velocity
distribution in the vessel.

The known formulae (Egs. (1-4)) may be received from Eq. (6).
Using this equation it is easy to get the result for the case where the

vortex is disposed on the distance r, from the axis of rotation of the
sphere, being parallel to this axis:
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Lz%pF(RZ —r3)3/2. (7)

3. IMPULSE IN THE SENSE OF KELVIN AND THE
ANGULAR MOMENTUM

The impulse in the Kelvin's sense differs on principle from the
momentum [8-10]. It is so because the transfer of the momentum
which is necessary to set unmoving liquid in the state of given motion
(just this is the impulse in the sense of Kelvin) is accompanied by the
action of walls which can sufficiently change the momentum of a
liquid. In the case of angular momentum the similar situation is less
necessary because the action of walls to change the direction of the
rotating liquid flow is centripetal and does not change the angular
momentum. E.g. let us consider the cases shown in Fig.2. A liquid is
rotating around the vortex disposed along the axis of cylinder or
parallel to it. To create such a motion one must do a push on the
shaded surface in the direction perpendicular to this figure plane. The
following centripetal action of walls is oriented radial, and the angular
momentum oriented along Z -axis remains unchanged.
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and parallel to it. The surface which must be pushed to create
the considered motion of liquid is shaded.

In general case shown in Fig.1 the Kelvin's impulse is also
expressed by the shaded surface [4]:

px =pIS, (8)

where S is the magnitude of the surface limited by the vortex and
walls. It is reasonable to think that the angular momentum can be
calculated as the product of the Kelvin's impulse on the radius vector

R of the center of this surface:
L=R.pk. ()]

All preceding formulae for L. confirm our proposition. Namely, if the
vortex is disposed along the axis of a cylinder then R, =R/2 and
px =pI'RH. Their product gives Eq. (1). If a vortex is disposed
parallel to the axis of rotation of the cylinder then
R,=r,+(R-1,)/2=R+1,)/2,pgx =p'(R-1,)H, and their
product gives Eq. (2). If the vortex is disposed along the axis of
sphere then R =4R/3n,px = pl“nR2 /2, and their product gives Eq.
(3). If the vortex is disposed along the axis of two concentric spheres
then R, =4(R§ —Rf)/sn(Rﬁ —Rf), Pk =pI'n(R3 —Rf)/z, and

their product gives Eq. (4).

Let us prove the equivalence of Egs. (9) and (6). The center of the
imaginary surface which one pushes to create a given motion is on the
following distance from the Z -axis:

__[rdS_lrmﬂx
¢ Jds s,

min

zrdr

86



Georgian Electronic Scientific Journals: Physics #1(38-2)-2003

(Tin»>Tmax are the minimal and the maximal distances of the surface

S from the axis of rotation).
According to Egs. (8,9) we obtain:

rma X

L=pl | zrdr. (10)
1‘min
On the other hand

rma X

_ le i
r_[ zrdr = 2(}dr .

min

The last integral must be taken along the boundary of the surface S in
the positive direction of revolution. Substituting Egs. (8,10) in Eq. (9)
we obtain:

L=—prur. (11)

Eq. (6) may be also transformed in the integral about the same path
that gives another expression of L :

Zl'le

|ty -1,)dz =z, (12)
1 2

L=-pI'(Y"dz. 13
,PTD (13)

The equivalence of Egs. (11,13) means the equivalence of Egs.
(6,9,10). We have obtained these formulae for conditions determined
in Sec.2. However some generalizations, described in the following
section, provide the possibility to use our general equations (Egs.
(6,9-11,13)) for actually any shape vortex line.

4. GENERALIZATIONS
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The simplest generalization, which can be made as compared with
Fig.1, is the case where a vortex is placed between the wall and
another (also axially symmetric) body. Our general formulae (Egs.
(6,9-11,13)) may be directly exploited in this case. E.g. so may be
received Eq. (4) and the following expression for the case where a
vortex is disposed between two coaxial cylinders parallel to the axis
of their rotation. In this doubly connected area the existence of a

circulation I'; is possible on the surface of inner cylinder which gives

the additional contribution to the angular momentum. Together with
the contribution of a vortex it implies:

L=ply(R3 ~R})+p(R3 -17). (14)

If a vortex is disposed between two concentric spheres parallel to
the axis of their rotation, and the edges of a vortex are placed on the

surfaces of both spheres (1, <R;) then:

L=Sor|(R3-) (ki) as

and if the edges of a vortex are placed on the surface only of the outer
sphere r, >R then (cf. Eq. (7)):

2 ) 2\3/2
ngdez—g) . (16)

We would like to note that in doubly connected area between two
cylinders a circulation I'jon the surface of inner cylinder is possible
independently from the fact if a vortex exists or not. In the simply
connected area between two spheres a circulation on the surface of

the inner sphere is possible only if it is caused, according the Stokes
theorem, by a vortex that pierces the sphere.
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If the functions 1(z) which describe walls or a vortex are not
single-valued then one must divide the curves r1,,r, into several
single-valued parts and Eq. (6) would be replaced by the sum of
several integrals with the own z;,,Z . a0d Ty, ey - 10e values of
these integrals depend on the absence or existence of a circulation and
its sign in the interval considered. In similar way one must deal with
Eq. (10) if the dependence z(r) is not single valued. Egs. (9,11,13)
may be used without any changes.

If z-axis divides the shaded area into two parts, then their pg

have opposite signs. But corresponding R also have opposite signs.

Therefore the sum of two products pgR. will appear in Eq. (9). Egs.
(6,11,13) may be used without any changes.

Now let us consider the closed vortex, which has no contact with
walls. If we increase the radius of circumference around the axis of
rotation, then the part of the vortex, which is on the distance I, ()
from the axis, enters in this circumference earlier than the other ones.
This part contributes in Eq. (6) nonzero I' until the part of vortex
with 1,.(z) and with circulation —T enters. The contribution of
circulation in Eq. (5) for 1, <r<r, is zero. Eq. (6) is valid but

r,,I,, must be substituted by 1 ,5.x - Eqs. (9,11,13) may be used

without any changes. It is right also in the case where the axis divides
the closed vortex in two parts. But, in this case, in Eq. (9) the product

px R must be substituted by the sum of such products.

5. SUMMARY

The momentary shape and disposition of a vortex and walls
completely determine the angular momentum of a liquid at the same
moment (let us remind that the interaction in the incompressible
liquid spreads in a moment). The motion of a vortex and its stability is
not considered in this paper. Egs. (6,9-11,13) only imply the angular
momentum corresponding to definite configuration of a vortex and
walls.
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