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ABSTRACT. The two-body Dirac equations for bound qq
systems are obtained from the different (five) versions of the 3D-
equations derived from Bethe-Salpeter equation with the
instantaneous kernel in the momentum space using the additional
approximations. There are formulated the normalization
conditions for the wave functions satisfying the obtained two-

body Dirac equations. The spin structure of the confining qq

interaction is taken in the form , with 0 <x <1. It is shown that
the two-body Dirac equations obtained from the Salpeter
equation does not depend on x. As to other four versions such
dependence is left. For the systems (us), (cu), (cs) the
dependence of the stable solutions of the Dirac equations obtained
in the different version on the mixture parameter x is
investigated. Results are compared with such dependence of 3D-
equations derived from Bethe-Salpeter equations without the
additional approximation and some new conclusions are obtained.

1. INTRODUCTION

The Bethe-Salpeter (BS) equation provides natural basis for the
relativistic treatment of bound qq systems in the framework of the

constituent quark model. But due to fact that the BS wave function
(amplitude) has not probability interpretation, three-dimensional (3D)
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reduction is necessary. Review of investigations of bound qq systems
(mesons) on basis of equations for the wave function obtained in
different versions of 3D-reduction of BS equation in the instantaneous
(static) approximation for kernel of BS equation is given in Ref. 7. In
literature there are known five such versions formulated in Refs. \cite
{bl}-\cite{b7}, below noted as SAL 7, GR 7, MW 7, CJ 7 and MNK
7, 7, versions. The last four 3D-equations have correct one-body limit
(the Dirac equation) when the mass of one of the particles tends to
infinity. As it is well-known the Salpeter has not such a limit. Note

that Gross equation is obtained only for m; # m, case, while other

versions work for the equal masses (m; =m, ) too.

In our previous papers [7-9] the dependence of the existence of
the stable solutions of above mentioned 3D-equations on the Lorentz
(spin) structure of qq-confining interaction potential was
investigated. In the literature (see e.g [10,11]) this problem was
considered in the framework of two-body Dirac equation (TBDE).
There arises the problem, what kind of Lorentz (spin) structure must
be used in the TBDE. It seems theoretically natural to begin from the
above mentioned 3D-relativistic equations obtained from BS equation
and use some additional kinematical approximations. Below such
approach is used for derivation of the TBDE for wave function of
bound qq systems and the corresponding normalization conditions
for wave function are formulated.

Then these equations are used for investigation of some aspects of
the problem connected to the mass spectra of (q bound systems
(mesons), namely, dependence of the existence of the stable solutions
of these equations and mass spectra on the Lorentz (spin) structure of
qq interaction potential.

2

32.THE TWO BODY DIRAC EQUATION FOR BOUND qq

SYSTEMS AND NORMALIZATION CONDITIONS FOR
THE CORRESPONDING WAVE FUNCTION
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To derive such an equation note that all 3D-equations given in
Ref.1 can be written in the common form (c.m.f.)

M =h,(p)=h, (-l (p) =

&' o (o
=TIM: p)Y) ® 15[ L V(p,p) By (p) @.1)
(2m)
where
Myl (SAL)
2o o,
1 1+hlj, (GR)
2 (]
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l_M+hl+h2 )
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hy =e;p; +my), o =m{ +p;, 0,=0,®1,, 0,=I®0,.

Note that from the eq.(2.1) with the operators II (2.2)
immediately the system of equations (3.61) in Ref.1 follows with
definition (3.62,63), if eq. (2.1) is multiplied from left by projection

(ogap)

12 and their properties are used:

operator A

o; +o;h;

A(102°10t2) ZA(IOH) ®A(2(12), A(i(xi) i A(Ol )A(Bl) =8 ) A(Oh

2m;

@ (”2

5 1{, h
IR = AGD A = 2[1+ 1] (2.3)
®;

Now if in the operator [TSAL we use the approximation

p;—0
hy b" v? (2.4)
W; O
then the TBDE is obtained:
[M —h;(p)-h, (_p)}LPM n)=
=I1") ®7) P¥y®), (25
HSAL=1(V?+v3) (2.6)

2
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This has already been used in coordinate space for bound qq systems
in Refs.10, 11 and corresponds to Lorentz (spin) structure of
confining potential (see below(2.14)).

In approximation (2.4) from (2.2) it follows

gk =%(l+y?). (2.7)

As to MW, CJ and MNK versions for derivation of corresponding
TBDE the additional to (2.4) approximation is need, namely,

II(M;0) = I(m; + m;;0) =11, (2.8)
which is quite natural because it corresponds to zero approximation in

iteration procedure for solving nonlinear over M eq. (2.1) for the
MW, CJ and MNK versions. As a result from (2.2) it follows

1o, o 0 o 0
my™ = 2ht vt @vd)] 2.9)
m.
| M= emy (&
1 2
I, = E[Iﬂw? oyl e (2.10)
Hi=——— (MNK)
m; +m,

Thus, we have the following TBDE obtained from, (2.1), (2.2)

[M —h,(p) — h, (—p) [y (0) =
=Ty ®y)]

\

d3p
V(p.p) ¥ (1’ ,
(2n) P:p)¥MP) ,  (2.11)
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where the operator Il is given by the formulae (2.6), (2.7), (2.9),
(2.10).

Note that there is the another approach for formulation the TBDE,
namely, generation of the one-body Dirac equation to two-body one,
using constrain dynamics and relation to quantum field theory.
Review of such an approach is given in Ref.12.

Representing the wave function Wy (p) as sum of "frequency"
components

Pu@ = XATY @M@ = D () (2.12)

(%) 00y

from the eq. (2.11) the system of the equation for the functions
P2 (p) follows

[M (00 +00,0,) ] (p) = AG*V Ty @)

J o Vo) ¥ ) 13)

3

Taking the qq interaction operator V in the form 7 (combination
of one-gluon exchange and confining part of potential)

V:Y? ®Y3V0G +[xy? ®y(2) +(1-x)], ®12]VC (2.14)
and representing the function ‘Plf/}x ‘a2)(p) as

P () = (2.15)
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1 1
=NG || aop [® -0, |=£5 () [k (D)
where
+ oym ®, +0,IM
N(@a) oy - [@1F %My [0 T XMy ’ 216
P 20, | 20, (2.16)

then for the wave functions Xg\%'%)(p) from (2.13) can be obtained
the following system of equations

[M — (00 + 0,0, )]Xﬁl%) (p)=

V@002 (o oy G pny 2.17)

=2 I

oy 'on (2 )3

where

V{geaci’@2) (p, pty = N5 (p)B(*1%21%2) (p, p)N{$1“2) (p'), (2.18)

1— ajog0q 'y '(61p)(e2p)(ePp')(ep') Vy(p,p). (SAL)
(o1 + oymy )@y +apmy ) (o) '+ oy 'my )@y +op 'my)

(2.19)
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a,0,; '(6,p)(o,p")
(@, +0,my ) (e, '+ 0, 'my)

={V1(p,p')+ Vz(x;p,p')} (GR) (2.20)

_ {1_ 01004 0y (61P)(0:P )60 )6 ') }vl(p o)+
(o + oymy )(@, + opm, ) (e '+ oy 'my )@, '+ 0, 'my) ’
P o0, '@p)©p')
(o +oymy)(o '+ oy 'my)

o, 0, '(6,p)(6,p")
(@, +0ymy ) (@, '+ 'my)

}Vz(X;P,P'), (MW) (2.21)

a,04 '(6p)(o(p") "
(o +oymy (@ '+ og 'my)

B(192¢1%2) (p, p") = Vi (p,p") {

0,0, '(6,p)(6,p")

Hl:|V2 (x;p,p"),
2)

(0, +0o,m;)(®, '+ 0, 'm (2.22)
(CJ,MNK)
®;'=+/m{ +p', V,(p,p') = Vog (P,P") + V¢ (D),
V(x5 psp") = Vo (p,p") + (2x =DV (p,p"). (2.23)

It is very important that the TBDE (2.17) with effective potential
(2.18) with (2.19) obtained from the equation (2.1), corresponding to
SAL version (2.2) does not depend on parameter X interned in the
interaction operator (2.14), which means that from this equation no
information can be obtained on the Lorentz (spin) structure of the
confining qq interaction potential (2.14). Second interesting result is
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that the wave functions satisfying the TBDE (2.17) with effective
potentials defined by formulae (2.18) with expression(2.19), (2.20),
obtained for SAL and GR versions (2.2) of the 3D-relativistic
equations have all nonzero "frequency components" whereas two
components of the wave functions satisfying the equation (2.1) with
projection operators (2.2), are zero, namely:

(2.24)

which directly follows (and is well known) from the eq.(2.1) if it is
multiplied (from left) by the operators A(IJ‘;“), A(E‘r) and used the

formulae (2.3).

For formulation of normalization condition for the wave function
(2.12) which satisfies the equation (2.11), we note that normalization
condition for Salpeter wave function obtained in Ref.1 (see (3.14))
can be written in the form

| (2.25)

The analogous condition can be derived for wave function
satisfying Gross equation (2.1) (2.2) if we use equation for full Green
operator corresponding to the equation (2.1).

- ~ 1
G =g Iy + g, UG, go=[M-h; -h,] ",
(2.26)

Assuming that the operator G~! exists (being natural at any rate

in the bound states, we need) from eq. (2.26) after some transformati-
ons the following relation can be obtained
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Gron[ggl - ﬁ]éro = GI, 1T . (2.27)
Noting that | from (\ref{eq.20}) we have
GI,ITR [ggl - ﬁ]érOHGR =GI, TR, (2.28)

Now using the spectral representation of Green operator G

O )@ _
G(p)= %E;BXMZB +R(P), <6PB ‘ =(®p 1), 229
— B

from (2.28) it can be obtained the relation

<<T>M \HGR\5M>HGR =2MITR. (2.30)

It means that the normalization condition analogous to (2.25)

| (2.31)

holds only in corresponding subspace of the Gilbert space. Note that
the condition (2.31) can be obtained from the formula (3.28) of ref.1,
which was not derived, but supposed with an analogy to (3.14).

Now, noting that the TBDE (2.11) for the SAL and GR versions
of the 3D-relativistic equation (2.1) were obtained in the

approximation (2.4) for the projection operators 175ALand [7COR, the
corresponding condition for wave function can be obtained from
(2.25), (2.31) by replacement (2.6) and 1R = HS‘R (2.7). Thus we

have
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, (2.32)

where H(S)AL and HB}R are given by formulae (2.6), (2.7).
Further, noting that the projection operator H%"W (2.9) satisfies

condition |, from relation (2.27) can be obtained the normalization
condition analogous to (2.32) i.e.

(2.33)

As to normalization conditions for wave functions satisfying the
TBDE (2.11), corresponding to the CJ and MNK versions, they can
not be derived analogously because the corresponding projection

operators IT, (2.10) does not satisfy the conditions IT IT, =11, or
IT,IT, =1. But bellow we assume (suppose) that the condition

analogous to (\ref{eq.25}) can be written in common form

: (2.34)

where operator T1, is given by the formulae (2.6), (2.7), (2.9), (2.10)

for all versions. As a result with an account of the formulae (2.12),
(2.15), (2.16) the normalization condition for the components of the

wave functions X%\TQZ) takes the form

Z X}(\%ﬂz) ’NSMZ)f1(2a1a2)+nofl(Z&BZ)NgngZ)

a0ofiBa

(B1B2)>
M

X =2M (2 35)

from which follows
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1

&’p L (BB, |
J' z Z[Elzlzlz "

2n)a1“z[31[32 !
1
0 0
_ _ 0 _ _
+a1ﬁlE§20.1(X2 ﬁlBZ) | +a232E1(§Ll 0(2'31 B2) . (236)
K K
1 SAL
o — O —B. — 0 * GR
—alazﬁlﬁzE§2°‘1 %2 PiP) ) ]Xf\%laz) (P)xﬁlﬁz)(P)=2M, Mw |
0 CJ,MNK

where

Egg]GZB]BZ) :\/(1 +0oy &)(1 T, 2 —)A+pB 1)(1+ B, —2 —). (2.37)
oN 0P} @5

Now we use the partial-wave expansion for the function
a2 @) [1]

IR (p) = Zx(“‘%)(p)( pj
(2.38)

where R(Loélf 2)(p) are corresponding radial wave functions. And the

potential functions Vg (P,p'), Vc(p,p') are represented in form
(local potentials)

=Y (h

LSIM,

V(p-p)=2n’ ¥ V"(p,p)(n|LSIM;){LSIM; [n') - 39,
LSJM’
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where
L . 2% )
VEpp) = [ eV i (pordr, (2.40)
0

Jjz (x) being the spherical Bessel function. Then from the system of

equations (2.17), the effective potentials of which are defined by the
formulae (2.18)-(2.23) we obtain the following system of equations

for the radial functions R(Loélj"‘Z) (p)
SAL version

[M = (aj0; + 0‘2602)]R(OZI(XZ)(ID) =
JG)HI

= Y [pdpIN{S D (NS ) (p)~

o'on'0

—0l0p0 'Oy 'Ngql 7a2)(p)Nga' %) (p'))VlJ (P,P')]Rg??':?zy) () (2.41)
[M = (0,0, + a0, [R5 (p) =
= ¥ [p2apiING Y (NS ) () Vi (p,p)- (2.42)

(Xl'az'()

(oy'ay")

ooy "oy 'NGATO (INGA 2D (0)Vy g (p, YIRS (0) -

] [ -0 = -o - ! [ 2 ) ‘o, 1
oyogay "oy NG ()N “2)(p>2J+1V1<_)J(p,p>]R§‘:;;‘ff’(p>}

GR version

[M - (aj0; + O‘2032)]R(mo'%)(P) =
IGH
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Z f p2dpIN{SI2 (NS 2 ) () Vi (p, p)+

o (12 O
vN(O‘l_“z) N(“l"“z') 'V (“10‘2)
+a0y Nyy (p) 12 (") 20 (XPp)] 10)1 ) -
oo N5 OG0V, R0 243)

[M = (0 + 0tp0) | RII (p) =
- X [P apIN ) ()N ) VP,

o'an' 0

oy, NG (NG 2 (0 (x; p, p)IR {11927 (p) (2.44)

MW, CJ and MNK versions

(oy0)
M- (01®1+a2®2)]RJ( 0 (p)=

oL 0 o', 1
> J p2dp'{[(N{51%) (p)N{}! ”(p')[J—

oy'an' 0

o100 oy NG %) (NG "”(p’)[ J)vl (p.p)+
+(a1a1N§;°“°‘2)(p)Nfg“"“z%p')(u j+
2

+aaN|S T (NS “2)(p')[ ]) s G IR ) +

P 1
H(ogayN A% (N “”(p')[ ]—
’)

—o20N{ T (PN u”(p)[ ])Vz( Hesp PR} (245)
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[M — (a0 + 0p00) R {419 (p) =

= o 1
= 2 [plap NG (NS ‘*”m@ Vi (p.p)-

oy'an' 0
1 (—oy —0,) (—oy'=0p") 1 |
—oja o' Ny, (PN}, (p") 0 Vig£1)(p,p)+

_ SV 1
+(ouocm§2°"°‘2’<p)N§2°‘1°‘2)(p'>[M J+ (2.46)
2

—_ L v 1 1 v
+0p0, NG %) (pyN{G "”(p')( ) }M (x;p, PR {2 (p) +
1
2
2J+1

0 1 J+1 J
V(l) — VJ+1+ VJ—] ,
nel 2J+1K J ) O S P

+[0€10‘20‘1'0%'1‘1%50(l o) (p)NS“"‘“Z"(p')

Vi (PR ()

where

JJT+D T i 24
Vaor =551 [Vn* -Vi l n=12, (247)
1
Vs = W [vr{i1 +41(J+ l)VI{“]

1
Note that if only confining potential (2.14) and parameter x = E

are taken into account, then equations for MW (2.45), (2.46) and SAL
versions (2.41), (2.42) versions are the same. As to versions GR and
CJ, MNK equations (2.43), (2.44) and (2.45), (2.46) coincide with
each other and what is more, dependence of these equations on total
spin (S) disappears. Dependence of spin (S) appears only if Vog is
taken into account, what can be seen from formulae (2.20), (2.22) too.
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It is interesting to compare the system of equations (2.41)-(2.46)
with the system of equations obtained from (2.1) without the
approximation (2.4), (2.8) (see eqs. (4.16, 17) in [1], ignoring the
terms corresponding to t'Hooft interaction )

[M - (o0, + azmz)]Rﬁ?ﬁZ)(p) =

A i) T [PV NG )+
o'’ 0
+oy o, NGA ™) ()NG4 %) () VY (p, pt) +
ooy NGA%) ()N H%2) () +

B N 0
050, NG 2 (NI 2) (VL) (x;p, p’)]Rﬁ((“ij)(P)

(00 N4 (NG 2 () -

_azazwggl“*2)(p)Ng‘;l'—‘*Z')(p'))vz(,ﬂ(x;p,p)]Rg‘gl)‘;z><p')} (2.48)

[M - (o0 +a2®2)] YT )(p) =
- AT (Mip) T [ pRap NG NG ()W (p,
oy'on' 0
+ala2a1|a2vN§;0ﬂ1_(12)(p)Nggaly—azv)(pl)vl(Jil)(p’pv)+
ooy N M%) ()N (p) + (2.49)

0150, NI 792 ()NEE2) (9)) V] (x; p, p)IR (%4 %27 (p') +

(ay'ay)

f -0 — —a'—a,' ' 2 ' v
Hoyagay'oyNGH ™) (p)NG™ “2><p>ZJHVI(_)J(p,p)]RJm” ™)},

where
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—+) _

A =41 AGM™ —o (SAL); AYP) =11, AP =0, (GR);
AED — 4 AGM , (MW);
o+
M+ (@) + 0L ®
A (o) M (@07 0509) - (2.50)
2((01+(D2)
A ()= 2BR [M(a p57%) = pIM (o) — ) + B(ay oy +°‘2°°2)J’

(MNK).

Note that the last expression in (2.50) is obtained from (3.62) in
[1] after some transformation.

Main difference between the system of equations (2.41)-(2.46)
and (2.48), (2.49) with the expression (2.50) is following: 1) In the

wave functions Ri‘;‘f“) (p) satisfying the system of equations (2.48),

(2.49) for (SAL) and (GR) versions the nonzero functions are only

L+s+J) (p) and RSSJ) (p) respectively (about this fact was mentioned
above), whereas in the corresponding system of equations (2.41),
(2.42), (2.43), (2.44) all components of wave functions Rioé';“)(p)

are nonzero; 2) The system of equations (2.48), (2.49) for the MW, CJ
and MNK versions are nonlinear over M whereas the system of
equations (2.45), (2.46) are linear one; 3) Dirac equations (2.41),
(2.42) obtained from the Salpeter equation do not depend on mixture
parameter x, what can be seen directly from (2.13), (2.14).

3. PROCEDURE FOR SOLVING THE OBTAINED
4 EQUATIONS

For solving bound-state equations (2.41)-(2.46) or (2.48), (2.49),
we need to specify the interaction potentials Vog and V( (2.14).

Below for V¢ (r) we use the following form [1], [8]
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4 i 0)21‘2
Ve() = asmiy) — 2 =V ERY
21+ Agmm,r?
12 277
as(Q?) =~ — n My, =my 4y, = 2 (32)
33—21’1f A2 my,

where Q2 is the momentum transferred and the 4/3 comes from the

color-dependent part of the qq interaction, n, is the number of flavors
(ny =3 for u, d, s quarks; n,=4 for u, d, s, c; ny=5 for u, d, s, c, b).
®g,A,Vy and A are considered to be the free parameters of the

model. The potential given by expression (3.1) effectively reduces to
the harmonic oscillator potential for the light quarks u, d, s and to the
linear potential to the heavy ¢, b quarks is the dimensionless

parameter A is chosen small enough. Moreover, asymptotically, for

a large r it is linear and almost flavor-independent. The one-gluon
exchange potential is given by standard expression [1], [8]

4 ag(mp)

3 (3.3)

Vog (@)=

Now we have to specify the numerical procedure for solution of
the systems of radial equations (2.41)-(2.46), (2.48), (2.49). A
possible algorithm looks as follows: we choose the known basic

functions by R, (p). The unknown radial wave functions are
expanded in the linear combination of the basic functions

R{%%2) (p) = | [2M(27)? zocgig;z)RnL(p), (34)
n=
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(oyap)
nLSJ

equation for the radial wave functions is then transformed into the
system of linear equations for these coefficients. If the transaction is
carried out the finite system of equations is obtained that can be
solved by using conventional numerical methods. The convergence of
the whole procedure, with more terms taken into account in the
expansion (3.4) depends on the successful choice of the basis. In case
of the confining potential of form (3.1) it is natural to take as a basis
the functions corresponding to oscillator potential, which is obtained

where C are the coefficients of the expansion. The integral

from (3.1) at A4, =0, in non-relativistic limit of the system of

equations obtained from (2.41)-2.46), (2.48),(2.49). The radial wave
functions in this case have the form [1] (the formula (4.52)).

4
Ko g 13 ag (M),

P 2
Z2=""R,(2)= anzL exp(—%)lFl (-n, L+%,zz),

Po
3
2F(n+L+E) 1
Cn: b
L0 T+ L3
2

where | F; denotes the confluent hypergeometric function.
Now, satisfying the expression (3.4) into the system of equations

(2.41)—(2.46) gebraic equations for the coefficients Cfils(?) can be

pOZ\

obtained

( ) ( s0y'a") (oy'0,")
Mcnilgjz = z z Hn%léljz;nflli'gjz‘ (M)Cn(I):lS(;2 . (35)

o;'o,"'n'L'S!
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It is necessary to note that the matrix Hqp(M) depends on meson

mass M only for MW, CJ and MNK versions as it can been seen from
equations (3.6) for M is not linear one and therefore should be solved,
e.g. by iteration. As to the system of Dirac equations (2.41)—(2.46)
such a problem does not exist.

4. THE NUMERICAL RESULTS AND ADDITIONAL
5 CONCLUSIONS

The main problem we have investigated at first stage is
dependence of the existence of stable solutions of the eq. (3.6) i.e. the
equations (2.41)—(2.46), (2.48), (2.49) on Lorentz (spin) structure of
the confining qq interaction potential, i.e. on the parameter x. This
will be done taking as examples the us, cu and cs, bound states
with constituent quark masses /|, |, | and the free parameters of the

confining potential (3.1), (3.2) -, , Ay =0.0270, A =120MeV

Note, that in [8] only the SAL version of 3D-reduction of Bethe-
Salpeter equation was considered as to MW, CJ and MNK without

additional approximation (2.4) with oscillator like potential (A, =0
in (3.1)) were considered in Refs.7, 9.
The results of the calculations are given for states 25T ; (note,

that for cases 381 ,3P2 are ignored additional corresponding terms

’D,.’F, because they give small contribution in the calculated

mass).

The additional conclusions (to pure theoretical results obtained in
the section 2), which can be obtained from the Tables 1, 2 are the
following:

1. The area of changing of parameters x, for which stable

solutions of two-body Dirac equations exist, is a little
enlarged compared for all versions of 3D-equations.
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2. For cu and cs bound systems Gross version works better
what is related to the large difference of constituent masses.
3. The area of existence of the stable solutions is enlarged with
increasing of the constituent masses which is theoretically
understandable.
4. Masses of the bound qq systems obtained from solutions of
Dirac equations are bigger then masses corresponding to 3D-
equations obtained from BS equation for all versions except

GR version case.
5. It is very important, that for x=0.5 (i.e. the equal mixture of

scalar and 4th-component of vector confining qq -interaction
potential) the stable solutions of considered relativistic
equations always exist and can be used for investigations the

mass spectrum and properties of bound qq systems.

Table 1. The dependence of the qq system mass for light
constituent quarks on the mixing parameter x in the different 3D-
reductions of Bethe-Salpeter equations and corresponding Dirac
equations. “*” denotes the absence of the stable solutions. Masses

SAL
SALD
GR
GRD
MW
MWD
cJ
CcJD
MNK
MNKD

0.0

839
944
863
879
878
924
814
923

0.1

812

859
947
877
887
893
930
830
929

0.3
us
870

897
954
907
905
924
942
861
941

are given in MeV.

05 0.7
’S, (892)
914 950
979

934 967
962 975
943 983
928 957
959 998
955 972
891 *
955 972

0.9

980

X X X K| X X X ¥

1.0

993

LRI R S AR R S R
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us (1350)
SAL 1189 1204 1213 1210 1202 1189 1182
SALD 1349
GR 1233 1232 1229 1223 1218  * *
GRD 1304 1302 1300 1298 1298  * *
MW 1255 1253 1249 1250  * * *
MWD | 1278 1274 1267 1260 1257 @ * *
CJ 1268 1267 1263 1260 1264  * *
CJD 1296 1294 1290 1287 1284 1285 *
MNK 1217 1212 1202 1190  * * *
MNKD 1295 1293 1289 1286 1284  * *
us P, (1430)
SAL * * 1189 1289 1367 1430 1458
SALD 1318
GR 1119 1159 1237 1310 1381 * *
GRD 1278 1284 1297 1314 1336  * *
MW 1184 1209 1262 1326 1384  * *
MWD 1185 1200 1234 1275 1326  * *
CJ 1181 1211 1276 1345 1421 * *
CJ/D 1254 1264 1286 1310 1337 1369 1388
MNK 1137 1223 1282 1344 1408 *
MNKD 1254 1264 1285 1309 1388 1372 *

Table 2. The dependence of the qq system mass for heavy
constituent quarks on the mixing parameter x in the different 3D-
reductions of Bethe-Salpeter equations and corresponding Dirac
equations. “*” denotes the absence of the stable solutions. Masses

0.0

0.1

0.3

are given in MeV.

0.5

0.7

0.9

1.0
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cu 'S, (1863)

SAL 1881 1895 1920 1943 1965 1985 1994
SALD 1983

GR 1883 1896 1921 1944 1966 1986 1995
GRD 1979 1979 1978 1978 1978 1978 1979
MW 1915 1922 1935 1951 1972  * *
MWD 1924 1929 1942 1958 1979  * *

CJ 1921 1928 1943 1960 1982  * *
CJD 1932 1937 1948 1961 1978 2003  *
MNK 1928 1934 1946 1961 1978  * *
MNKD 1927 1932 1944 1958 1977  * *

cu >, (2010)

SAL 1883 1897 1922 1946 1968 1988 1988
SALD 1981

GR 1886 1899 1924 1947 1969 1989 1999
GRD 1977 1977 1978 1979 1981 1982 1983
MW 1918 1924 1938 1955 1977  * *
MWD | 1921 1926 1939 1955 1975  * *

CJ 1923 1930 1948 1963 1981  * *
CJD 1932 1937 1948 1961 1978 2003  *
MNK 1930 1935 1948 1963 1981  * *
MNKD 1927 1932 1944 1958 1977  * *

cs 'S, (1971)

SAL 2020 2031 2055 2070 2088 2105 2113
SALD 2106

GR 2023 2033 2052 2071 2089 2106 2114
GRD | 2106 2100 2100 2100 2100 2100 2100
MW 2044 2050 2062 2077 2094 2118 @ *
MWD 2052 2058 2070 2084 2101 2126 @ *

CJ 2051 2057 2071 2087 2105 2126  *
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CJD | 2063 2067 2077 2087 2100 2116 2127
MNK 2052 2057 2069 2082 2097 2116  *
MNKD 2059 2063 2073 2085 2100 2120  *
cs S, (2107)
SAL 2023 2033 2054 2073 2091 2108 2116
SALD 2104
GR 2025 2035 2055 2074 2092 2110 2118
GRD 2098 2099 2100 2102 2103 2105 2106
MW 2047 2053 2065 2080 2098 2124 @ *
MWD 2049 2054 2066 2080 2097 2121 *
CJ 2053 2060 2074 2089 2108 @ * *
CJD 2063 2067 2077 2089 2108 2116 2127
MNK 2054 2059 2071 2084 2100 2119  *
MNKD 2059 2063 2073 2085 2100 2120  *

6
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0. d3dv30d9, . 3M33tM)0d30mM0, 0. Y1Msdzomo

AAIOTEAAAAEO XAOAEAAUE, OIIEAAEY IEUAAOEEA

AAOQA-OIEDEOAOEO AAIOTEAAEO 3-AALETEEAAEAIE

OAAOQYEEO UAAAAAA O4AAAAO4AA AAOEAIOAAUE
IEUAAOE AATOTEAAAAEAATL

EAAOE-AIOEEAAOEEO (9d) OEOOAIAAEOAEAEO IEU-
AOEEA 10-O4aAOEIAAIE AEOAEEO AAIGIEAAAAE, AAOA-
OIEPEOAOEO (AO) AAIOIEAAEAAI 3-AAIAETEEAAEAIE OA-
AOGYEEO UAAAAAA TEUAAOEE AAIOIEAAAAEAAI aOE
Oé/i\AAAoé/i\A AAOEAIOUE, OIYA AO-AAIGIEAAEO AOEE

,,,,,,,,,

000 RAOIAAAIAUE, OEOEAEOAY AAITUAIAAOEEA AAIA-
OAAEEE AOIAAOEAE IEAAEIAAAAE. xIOIOEEOAAOEEA
[EOIEOAAEO DEOIAAAE OAEUOOE xOIQGYEAAEOAEAEOQ,
ONEAAEY AEIAUIXxEEAAA] IEUAAOE 10-OaAOEIAAI AEOA-
EEO AAIOIEAAAAO. qq OOEEAOEGIAAAAEO DIOAIYEA-
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EEO EIixAEIAIOEO IAREEEOAEAEO EIOAIY (OPEIOOE)
O000POO0A AUAAGEEA UAIAAAE xIOIEE xy) ®y) +
+1-0L ®1, , OAAAY 0<x<1. IAUAAIAAEA, Oll OIEPEOA-
OEO AAIOIEAACAAI IEUAAOEE AEOAEEO 10-OaAOEIAAIE
AAIOIEAAAAE AOAA AAIIEEAAAOEE 4-EA. OAY UAAaAAA
O4aAA AAOEAIOAAO, AOAEE AAITEEAAAOEAAA PAEAUE
OUAAA. AIOEE OEOOAIAAEOAEAEO us, cu, cs AAIIE-
AEAOEEA AAIOIEAAAAEO OOAAEEOOE AliaOIAAEG AO-
OAAIAEO AAIIEEAAAOEAAA 4-AA AA UAAAOAAOEEA EI
UAAAAAAEAI, ONIAEEY IEEUAAA AO-AAIOIEAAEO 3-AAiEI-
IEEAAEAIE OAAOGYEEO UAAAAAA AAIAOAAEEE IEAAEIA-
AEO AAOAUA AA IEUAAGEEA ATAEAOEE ASAEE AAOEAIs.
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