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ABSTRACT. We theoretically investigated electron-hole states
in  isolated  and  vertically  coupled  flat  quantum  dots.  The
dependence of exciton binding energy on interdot distance has been
studied.  The  obtained  results  show  very  high  value  of  exciton
binding energy at a wide range of interdot distance.

INTRODUCTION

Semiconductor quantum dots (QDs) are solid-state nanostructures,
which  allow  confinement  of  carriers  in  all  directions  within
dimensions  smaller  than  their  de  Broglie  wavelength  [1].  Quantum
confinement results in a characteristic discrete energy spectrum and -
like density of states. Confinement in nanostructures with some of the
linear dimensions is small compared to the exciton radius providing a
possibility of enhancement of both binding energy and the oscillator
strength of exciton.

Coupling between quantum dots (QDs)  is  now a matter  of  great
importance.  In  the  “artificial  molecules”  formed  by  two  or  more
coupled QDs interdot  coupling can be tuned far  out  of the regimes
accessible  in  natural  molecules,  and  single-particle  tunneling  and
Coulomb interactions can be varied in a controlled way.

In the present work electron-hole Coulomb interaction is calculated
in the two-fold stack of ZnSe/CdSe QDs. 2D-like QDs formed by Cd
fluctuation  [2]  are  considered.  In  quantum  structures  of  this  type
lateral  sizes  few  times  exceed  the  bulk  exciton  effective  radius
therefore only vertical confinement is considered. Realistic potential
of  Pöschl-Teller  type  was  used  as  a  single  particle  potential  for
describing  space  confinement  in  vertical  direction.  Coulomb
interaction  between  electron  and  hole  is  defined  by  direct
diagonalization method.
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CALCULATIONS AND RESULTS

    Let us first consider single sheet of QDs. In the 2D-like QDs formed
by Cd  fluctuation  with  very  low height  to  width  ratio  the  vertical
motion  of carriers  is mainly governed by confinement  effects  while
their lateral motion obeys Coulomb attraction between them. 
    The  potential  energy of  interaction  of  two opposite  elementary
charges – electrons and holes placed in a thin semiconductor layers
(with dialectical constant  1 ) the thickness of which is less than the
radius  of  electron-hole  pair  of  bulk embedded between the material
with dielectric constant 2  is given in the formula [3]:
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Here cylindrical coordinates are used. 
In our case  21  , therefore the second term if the brackets in

eq.1 are negligible, besides this the thickness of the embedded layer is
counted  to  be  much  less  than  characteristic  distance  of  in-plane
motion. That is why in the first approximation may be assumed that
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means of direct diagonalization is:
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In  the  first  approximation  when  z-dependent  Coulomb  term  is
neglected the wave function is given by the formula:
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),(nm  is  the  solution  of  two  dimensional  Coulomb  problem
describing electron-hole lateral motion:
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where n  is the main quantum number,  n...1,0m  ;  e  and  are
elementary charge and Planck constants,   reduced effective mass of
the  electron-hole  pair;  F  is  the  confluent  hypergeometric  function;

nmC  normalizing constant.  )z( )h(e
)n(e
)q(p are the electron (hole) single

particle  wave  functions  which  describe  their  vertical  motion.
Corresponding to (3) energies are given by the formula:
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where )h(e
)q(p  are eigenvalues corresponding to )z( )h(e

)n(e
)q(p . As to small

dot  vertical  size  separation  between  )h(e
)q(p  shells  much  exceeds  the

Coulomb term, under each h
q

e
p   the energy levels corresponding to

different main quantum number of in-plane motion are grouped. These
levels are (2n+1)-fold degenerated. Taking into account z coordinate
in Coulomb interaction causes their shift and splitting.

To take into account variation of Cd concentration in QDs formed
by Cd segregation and interdiffusion vertical confinement is expressed
by the potential (Fig.1):
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Here  0U  is  the maximum band off  set  between the QD and barrier
material realized in the center of QD layer.  1  is a measure of dot
size and is defined from the  emission spectra of single QDs.
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Fig.1. z-direction confinement potential in  eV for single QDs

The  expressions  for  eigenvectors  )z( )h(e
)h(e
)q(p and  eigenvalues  )h(e

)q(p

can be found elsewhere [4]. In our case for ZnSe/CdSe quantum dots
only one electron and only one hole levels are possible inside the well.
For potential barriers of electrons and holes - e0U  and h0U  0.750eV
and 0.230eV are taken; effective masses are 0.13m0 for electrons and
0.45m0 for holes.

As was mentioned we calculated z-dependent Coulomb energy by
direct diagonalization of Hamiltonian matrix

llH ll  )HHH( c
h
0

e
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l  denotes  the  states  of  electron-hole  system  described  by  wave
functions  (3),  )h(e

0H  and  cH  are  single  particle  Hamiltonian  and
Coulomb term, respectively.  In our  calculations  six  lowest  energy
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states of electron-hole relative lateral motion are found to yield good
convergence.  In  Figure.2  exciton  energies  in  2D  ZnSe/CdSe  QDs
without (on the left) and with accounting (on the right) z-dependent
Coulomb term are given. As is seen accounting z-dependent term in
Coulomb potential causes strong shift and splitting of energy levels.
Calculated  value  of  exciton  binding  energy  in  ZnSe/CdSe  QDs  is
increased up to 100meV for 1nm dot vertical  size and significantly
exceeds the binding energy of exciton in bulk CdSe crystal (15mev).
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Fig. 2.  Exciton energies with (right hand side) and without (left hand 
             side) accounting z-dependent Coulomb term

For the stacks of QDs single particle potential is (Fig. 3b))
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z = o is taken between the centers of QDs, a  and b  are dots vertical
size and the distance between them. If neglecting z coordinate in the
Coulomb  term  again  the  wave  function  of  electron-hole  system  is
given as:
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Because  of  coupling of QDs in  z direction  single particle  wave
functions are presented as symmetric and antysymmetric combination
of  functions  centered  in  neighboring  dots(fig.3c)).  Corresponding
energies are expressed as:
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)h(e  characterizes  overlapping  of  wave  functions  centered  in
neighboring dots:
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In Fig.3a) electron and hole single particle energies corresponding to
symmetric and antisymmetric wave functions are given. The energy of
electron-hole  system  if  neglecting  their  interaction  is  the  sum  of
electron  and  hole  energy.  So,  in  our  case,  when  only  one  single
particle energy level is possible in the single dot, there is QD molecule
there are four energy levels: two with positive  z-parity corresponding
to the both carriers in symmetric or antisymmetric state; and two with
negative total  parity corresponding to the electron in symmetric and
hole in antysymmetric state, and vice versa (Fig.3d)). 

a) b)
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Fig.3. a) – electron (filled circles ) and hole(blank circles) single
          particle energies as a function of interdot distance; b) -  shape 
          of confinements potential in quantum dot molecule; c) -  single 
          particle wave functions;  d) energies of electron-hole pair 
          excluding Coulomb interaction between them as a function of 
          interdot distance 

When  accounting  the  Coulomb  interaction  in  the  first
approximation, that is the last term in (10), under each of four energy
levels  group  energy  levels  describing  electron-hole  lateral  motion
appear (not shown here).

We  took  into  account  z  coordinate  in  Coulomb  term  by
diagonalization  (4)  matrix  with  l  corresponding to  (6)  and (5)  as
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single particle  potential.  z-dependent  Coulomb interaction mixes the
states with the different main quantum number of in-plane motion and
owing  the  same  total  z-parity.  In  Fig.4.a)  the  obtained  energies  of
excitons as a function of interdot distance are given. The solid lines
correspond to the states with even z-parity, dotted lines to the states
with  odd  z-parity.  For  simplicity  only  two  lower  energy  states  of
“bonding” and “antybonding” behavior of positive and negative parity
are presented. With increasing the distance between dots low energy
level  approaches  to  the  lowest  energy  level  of  exciton  confined  in
isolated dot (labeled by Eexc), the high energy levels tend to the sum of
the  energies  of  non-interacting  electron  and  hole  (e+h).   Exciton
binding  energy  is  very  high  again  (Fig.4.b)).  For  a 1nm and  b
=1.2nm it is 0.078eV. With increasing interdot distance it decreases to
0.065eV  for  b =  4.2  nm,  then  increases  again  and  gradually
approaches the binding energy of excitons in isolated QDs.
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Fig.4. a) - Energies of excitons of positive total parity (solid lines 
          labeled and negative total parity (cyrcles) as a function of 
          interdot distance; b) - exciton binding energy as a function of 
          interdot distance
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