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ABSTRACT. We offer nonperturbed scheme of S-G equation
soliton  and  briser,  4  equation  of  kink-antikink  couple  for
obtaining  of  the  spectrum  of  bound state  in  eikonal  approach
using Glauber method. Correspondingly, analytical expression of
profile functions have been obtained. This gives the possibility to
express scattering amplitude on briser by meson of the theory and
on kink-antikink couple of their constituent solution, antisoliton
and kink-antikink scattering amplitudes without using potential.

It  is  known that  collective  excitons  of  particle  systems having
nonlinear potential (due to strong self-influence of the scalar field) are
considered as physical solitons [1]. 

According to the hypothesis the soliton like particles are quantum
corpuscles of such field. [2].

At first from the activity function by means of variation principle
for the classical nonlinear fields, Euler-Lagrange equation is obtained,
where  soliton  like  solutions  are  nonperturbed.  Thus,  we  gradually
imagine  the  quantization  of  the  classical  field  by  means  of
nonperturbation method, particularly eikonal approach. 

In this approach, when the scattering is observed only on the small
angles, the field inside interaction area is equal to the field, which is
elastic  scattered,  and this  one far  from scattering  is  the  diffraction
field  of  Fraungofer.  In  conditions  of  ermitivity  of  the  scattering
potential the inside field gives the binding states i.e. negative energies
E < 0, if imaginary part of wave vector is ImK = i,  > 0 [3]. If the
"black"  ReK = 0  is  scattered,  an  interaction  is  nonelastic  and  the
inside field is the absorbed one. If Re K  0, then the absorbed part
corresponds to the field of the binding state of system [4]. 
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To  the  solutions  of  sine-Gordon  (S-G)  equations  solitons  and
antisolitons  –  Skyrme  [5]  gave  a  topological  charge  +1  and  –1
respectively, which agrees with the phase shift, while studying their
intercollision [App.A]. 

A couple solution of soliton and antisoliton i.e. briser is neutral
according to the topological charge; it itself is antiparticle and, that is
why the meson corresponds to it. 

Soliton is surrounded with briser clouds and most part of time it
spends in the state of exchange of vacuum with mesons of theory. The
meson is the briser  of small radius.  The free soliton (antisoliton) is
absorbed  by  the  vacuum briser  and  soliton  of  briser  is  irradiated.
According  to  the  classical  theory  this  process  is  stochastic  and
corresponds to the interaction of classical  solution field, to its  own
meson one. 

According to nonstochastic approach, the description is possible
in the conditions of small deviation from balance position and during
small scale of physical system. 

In the future approach, using the multitime method, one excludes
the secular members in the formal asymptotic setting. This dictate the
expression of nonlinear potential U() in the evaluative equation of
Euler-Lagrange, which doesn't  reveal any stochastic  behaviour.  The
trajectories in the phase space are smooth, the field   = <>, where
<> means the vacuum average value,   is  the descriptive  field  of
physical system, which generally may be stochastic. The trajectories
on the rotation points of the separatrice are not smooth – the physical
system here is still stochastic.  

Then one is deriving linearity near , but it breaks the symmetry
of task to the transformation of rotational and translational permanent
groups. This leads us to elementary excitation – Goldstone boson type
mode with zero energy. New  -<>  x field will change them into
the Higgs bosons.  The field equation gets the  expression of Klein-
Gordon linear equation:

 )()( 2xOxUx  .
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The solutions of these equations are mesons. 
If the constant g of an interaction is small and the Hamiltonian of

interacting fields was renormalized, it  would be possible to use the
perturbation  theory.  That  time the  mesons  were  described  by  free
fields  and  their  quantum  transitions  on  the  classical  solitons  of
mesons or on kink between the conditions of scattering link were due
to their interaction. 

Faddeev  and  Takhtajian [2]  solved  S-G  classical  equation  by
means of determination of action-angle variables.  In these variables
classical  Hamiltonian  was  brought  to  the  sum  of  free-coupled
particles,  taking  into  account  a  coupled  soliton-antisoliton  (briser)
solution.  Hamiltonian depended on variables of activity and not on
angles.  That is why, the following steps of quantization are trivial.
Unfortunately, it's problematic to find these variables. This task may
be solved using the method of reverse scattering. 

Dashen et al. [6] made quantization of S-G and 4 systems. The
lower energetic level is S-G or 4.According to this its mass consists
of  classical  part  which  is  followed  by  quantum correction.  In  the
correction  of  high  order  divergence  was  neglected  by  counter
members;  they  made  quantization  of  briser  in  the  same  way.  The
setting of the field in the approach of the given soliton solution breaks
the symmetry of the tasks in relation to continuous group. Crist and
Lee [7] solved the problem of emerged zero modes (which appeared
because  of  breaking  continuous  rotational  and  continuous
translational  symmetries)  by  introducing  collective  coordinates  as
implicit form.

The solutions of the field of quantum theory are correct using the
theory of perturbation [5]. The precision of quantum correction with
the  members  of  the  fourth  order  from  the  point  of  view  of  the
relativity of masses is due to particularity of S-G. In the case of kink it
is  not so. Though the correction of soliton mass is not precise, the
precision of their relativity is unexpected. The existence of the theory
of mesons points that an interaction is strong. It is known that if we
use the normalized theory of interaction for not small meanings of g,
it's impossible to use the theory of perturbation successfully. 
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In the conditions of strong interaction for the solution of the task
of scattering different methods are used. Of them Glauber method of
eikonal approach is one of the widespread approaches [8]. It uses the
function of profile  ( is a target parameter), which allows us to
count  the  scattering  amplitude  more  precisely,  than  in  the  Born
approach, or using Shvinger's variation functional. 

QUANTIZING OF SOLITON TYPE FIELDS

According to the given approach the central subject is a finding of
conditions of the scattering of meson on the soliton. 

Let us discuss a model of self-acting complex scalar field )t,r( .
The acting functional is:

  











 rdtd)g(U

g
1

2
1

2
1)t,r(S 3

2
22

t x ,          (1)

where g is a bound constant. The Euler-Lagrange equation has a form
[5]:



S

- 0
)t,r(g
)t,r(U)t,r( 


                            (2)

It means that the nonlinearity of the potential )]t,r([U is selected so
that the equation has soliton like solution, but soliton like particle is
described by a pseudoscalar field )t,r( . 

It's assumed in the eikonal approach that transferred impulse is in
the perpendicular  plane of the particle spreading z, along the radial
coordinate  . Let's write a field in the cylindric coordinates (z,) of
this approach:

  ikzti
IR e ei

g
t,z

t,r 


 )()(
)(

)( ,                   (3)
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where    ikze  is  scattered  field,    is  classical  field  and
( )( ) ( ) 1 ix

R Ii e         is  the  profile  function.  Inserting  the
expression  (3)  into  the  equation  (2),  we  shall  get  three  following
equations:

( , , ) , ,zz tt u                                  (4)

( , ) ( ) 0,RV                                    (5)

2( , ) ( ) ( )       I IV ,                            (6)

where )()( 




 z,Vzd
k
iE

x [App.B]. The last equations describe

bound  conditions  in  the  scattering  in  the  point  z  =  0.  From  the
equation  (4),  we shall  find  V,  becouse  we have known  x()  and

( )R  .
From (6) the law of dispersion is obtained:

2 2 2m k                                         (7)

SOLITON

If   t,r(cos1
g
m

t,rU 2

2
 )( ,  then  we  shall  get  S-G

equation from (4) one:

  0sinzztt
 .                            (8)

Here the variables are changed:
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tmt ,  zmz ,   g .                         (9)

The soliton solution of this equation is

)tvz(arctge4)t,z(  .                               (10)

This means, that the first member or classical field of three equations
has the form:

)vtz(marctge
g
4

g
)t,z( 


,                             (11)

where 2/12 )v1(  .
Let us appeal equations (5) and (6). Assume that 

 arctge2)(x .                                 (12)
Let us appeal the new variables 

zmz  .                                   (13)

The profile function will have a form:

  hsecith1)arctge2sin(i)arctge2cos(1)( .     (14)

Equation (5) gives that for a zero mode  00    )(R  th1  we
shall get

   0)th1(V,   .                                 (15)

The  frequency  of  normal  oscillation  is  determined  inserting
 2hsec21)(V  and  hsec)(I  in the equation (6). 



  hsec

m
hsec)hsec21,( 2

2
12                         (16)
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i.e.  we  can  rewrite  01   and  equation  (16)  for  nonreflective
potential  2hsec2



 hsec

m
hsec)hsec2( 2

2
22 .                        (16’)

4 kink
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The classical field   will satisfy the equation:

                    zztt
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2

g
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                             (17)

The nonstationar solution of this equation is kink:

                          





  tv

2
ztht,z )(                                   (18)

i.e. the classical field will have a form:
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
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
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Then  appealing  to  the  new  variabels  2/z2/mz  .  If  x()
soliton solution has the form (10) 

 arctge4)(x ,                                        (20)
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we shall have 

                                22 hsecishsec .                             (21)

The equation (5), which describes a zero mode will get a form:

0hsec)(V,
2
1 2 





   .                          (22)

From this we get )(V  :

1th3)(V 2                                     (22')
For  the  normal  mode  1 ,  from  equation  (6)  we  shall  get

Shrodinger type equation of scattering form:

2 2 21
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1
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,             (23)

then we shall see that discrete mode 

22
1 m

2
3 ,                                           (24)

which agrees with results of [6].
As we discuss the scattering on the small angles (cos 1)   and

assume  that  the  scattering  has  azimuthal  symmetry,  that's  why  of
profile functions we shall get the amplitudes of scattering

0
0

( ) ik d ( )J (k )f


     ,                        (25)
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where 0J (k )  is Bessel function of zero order, and their quadrates
will give a differential section of the scattering. 

QUANTIZATION OF BRISER

The equation of S-G 

 sin ,                                         (26)

in the descriptive coordinates ,vtx  vtx  is written 





sin
2

.                 (27)

Between  the  solutions  of  this  equation  is  soliton  s , antisoliton

sA  and a couple of soliton-antisoliton VSA   i.e. briser. 
To  form  a  briser  soliton  let  is  use  the  theorem  of  Baclund

transformation:

4
tg

U
1

4
tg SAoV  .                            (28)

For briser a parameter U is imaginary U = iv
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It  is  clear  that,  in  briser  soliton  and antisoliton  may be apart  each
other only in the limit distance. 
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In the v = 0 account system  t,xv  is a still wave, but in the
system of  pair  mass  center  its  components:  soliton  and  antisoliton
oscillate in relation to each other with the period 

  2/12v1

v2T



 ,                                   (30)

Accounting this (29) may be written as [5,6]:
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where 



2
mTT .

An  assumable  Skyrme's  charge  of  briser  is  zero,  but  brizer
consists  of two different named topological  unified charges.  At the
meeting of these particles the charge disappears i.e. annihilates. The
other  particle  emerges.  This  is  Frenkel's  exciton  i.e.  an  exciton  of
small radius. Quantization of doublets using WKB method was made
by Dashen et al.[3].

Taking  into  consideration  a  meson of  theory – briser  we  have
found  above  the  bound  conditions  on  S-G soliton  and  kink  of  its
elastic scattering. 

The  consideration  of  eikonal  approach  according  to  Glauber
having a form of multiorder scattering allows us to consider bound
conditions of briser on the complex objects – briser,  4 doublet, the
soliton and antisoliton, kink and antikink. 

Briser  will  not  have  topological  charge  of  Skyrme.  It  is  itself
antiparticle. That is why the meson corresponds to it. 

Thus  we  think,  that  briser  is  a  meson  of  theory.  It  is  special,
because it has a mass 
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16
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We shall  make quantization using Glauber's method. Really we
are accounting briser structure. 

From (5) let us appeal the following equation:

0)(G)V,( R   ,            (33)

From (6) we shall get
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I   ,          (34)

where according to Glauber, the profile function of a pair is
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In the  system of mass  center   is  a  distance  in briser  between
soliton and antisoliton.  If we insert  S  and  AS  from (14)  and (14')
meanings we have 
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 For a pair of 4 kink and antikink we have 
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The  offered  scheme  of  quantization  is  true  in  the  eikonal
approach, but contrary the need of setting of potential (accounting the
member of second order) is not necessary. 

APPENDIX A

The  quantitative  experiments  of  Skyrme  topological  charge
showed,  that  soliton and antisoliton attract  each other,  but  solitons
(antisolitons) do not. We have analogous results in the case of kinks
and antikinks

If we take a mark "+" then 2 soliton satisfies  limit  conditions
0  if   z   -   and   2 ,  when z   +  ,  i.e.  2

soliton undergoes to interpolation from 0 to 2. 

    02tt  ,, .

4 soliton totally undergoes to interpolation from 2 to 4 and so on. 
If we have antisoliton ("-" mark), then  2 , when z -

and 0  if z +, i.e. it undergoes to interpolation from 2 to
0.  According  to  this  Skyrme  gave  to  soliton  and  antisoliton
topological charge, respectively. 

In the case of 4 kink interpolation occurs from - to +. That is
why, topological charge of Skirme for kink will be +1 and for antikink
–1.  Skirme  supposed  about  equivalence  of  S-G  and  MT  models,
which are proved by Coleman. 

In the MT model fermion charge is

Q= 







 dxdxJ oo .

Fermion has Q = 1 and antifermion - Q = -1. In the bound (linked)
position Q = 0. From the theorem of Coleman it yields that 
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



 
E

m2
  J , 

where charge can be written by means of S-G fields.
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








 dx
m2

dxE
m2

Q xx
01 .

This is topological charge of S-G model. 

APPENDIX  B

Let  us  note  that  the  method  does  not  need  the  knowledge  of
potential [9], and it is used successfully to study elastic scattering of
pions on protons, deutons and some complex nucleus. 

We know that the meson of theory is briser. We have to solve the
equation of Klein-Gordon, which describes it. In the stationary case it
has a form

   0MV 222  .

This  expression  can  be  written  simply  in  the  form of  Shrodinger
equation  if  we  use  the  values   222 MK  ,  )V2(VU  ,

where M is a mass of briser. If we are searching for the solution in the
form flat wave   ikzer , then in the eikonal approach  zz ik
we get the equation of diffusion type more exactly of diffraction type 

 Vik z .

From this expression we have 
ikz ( )e .  

The Shrodinger equation of scattering form 

  0 )r(Uk22 
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could be initially transformed into Lippmann-Schwinger, which in the
asymptotic region r r

 will get a form

 





)r()r(Ue
r

e
4
1

'rde r
'rrikrik

3ikz



.

So,  equation  (3)  is  a  modified  form  of  Lippmann-Schwinger
equation in the eikonal approach. 
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