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ABSTRACT. Three different versions of 3D-reduction of the
Bethe-Salpeter equation for bound qgq-systems taking into
account both two- and three-body interaction potentials has been
considered. The normalization condition for wave function is
derived. Using the solutions of non-relativistic limit of above men-
tioned equations with oscillator type two-particle potential as a
basis, system of algebraic equations for expansion coefficients are
obtained. Next it will be investigated the dependence of existence
of the stable solutions of obtained system of equations on Lorentz
(spin) structure of two- and three-quarks confining potentials.

1. INTRODUCTION

The properties of baryons in the framework of the constituent
quark model (bound qqq -systems) at first stage were studied in non-

relativistic approach. Exhaustive review of such an approach is given
in [1] and will not be discussed below. The necessity of the relativistic
treatment of bound qqq -systemsis apparent (well known) for baryons

(N, Z, A, &, A, Q) with constituent quarks from light sector
(u, d, s). The natura basis of such investigation is Bethe-Salpeter

(BS) equation for three-fermion bound systems which were used e.g.
in [2-11]. The main approximation used in the BS-equation is
instantaneous (static) approximation for the kernel or its Lorentz-
invariant version (null-plane approximation). Below it will be used the
instantaneous approximation for the kernel of the BS-equation and
some additional approximation for the free two-particle Green
functions in the 3-particle system for the formulation two different



versions of the 3D-reduction of the BS-equation. These versions then
will be compared to the Salpeter type versions formulated in [11].

2. THE 3D-REDUCTION OF BS-EQUATION FOR
BOUND qqq-SYSTEMS AND NORMALIZATION

CONDITION FOR CORRESPONDING WAVE FUNCTION
The BS-equation for bound qqq -systems has well-known form:
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For the 3D-reduction of the equation (1) the following
approximations are used:

KOP; p, g p, ) >KOB, 6 0, d)=-VO(p, 6 7, )
K (i + Py Py Pf) = Ky (B, P) =—iVy (B, Bf). (4)

i.e. the instantaneous approximation for the kernels corresponding to
two- and three-body forces, and (c.m., P =0)

Ggij (M5 pij» dn) = [Ggij (M} pjj, dn) +
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i.e. in the ij free-particle Green function before two-body interaction

potentia the third (non-interacting) particle (n) is taken on mass-shell
suggested in [12] and used in [10], where the 3D-reduction of BS

equation without three-body force and GOIJ term was formulated.
Below this version will be mentioned as the IKLR version. Then the
additional term GO,J in (5) (suggested and used in [13] for the 3D-

reduction of BS-equation for bound qg system) will be called as the

IKLR+MW version.
Now using the approximation (4) and (5) after integrating over p,
and q, the BS-equation (1) for the wave function

Pw (P, G) = f (/’o(p a), (6)

we obtain the equation
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Note that the first term in (9) corresponds to the IKLR version, as to
the additional term in (9) appearsin the IKLR+MW version.

For derivation of the normalization condition for the wave
function @y, (P, §) inthe IKLR and IKLR+MW versions we use the

procedure suggested in [10]. We begin with the equation for total
Green operator

G(P)=Gy(P)+Go(P)IK(P) =K (P)+ KA (P)IG(P),  (11)

from which in (4) and (5) approximations it follows the equation for
the Green’ s operator in 3D-space (c.m.)
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This equation can be rewritten as
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Then the equation (7) can be written in the vector form (c.m.):
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Now it can be easily checked that if Green's operator satisfies the
equation (13), then the following relation holds:

Grom, [got-u16rlm, ro =iGéronm, ro. (17)

Noting that the equation (13) holds for arbitrary reference frame
P=(P,,P), the Green operator G(P) has the following
representation:

R [V (Y%

Substituting this expression in the relation (17) after extracting the

bound state poles in the operator G, the following condition can be
obtained (c.m.):

(Pm Py )=2M, (19)
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which is normalization condition for the wave function ¢, (p, §)
satisfying equation (7).

3. 3D-EQUATIONS FOR THE “FREQUENCY COMPONENTS”
OF THE WAVE FUNCTION AND CORRESPONDING
NORMALIZATION CONDITION

Introducing the “frequency components’ of wave function

P (b, 6) = ALE gy (. 4), (20a)

and taking into account the relation
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from (7) equation it can be obtained the following system of equations
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Now the normalization condition (19) takes the form:
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Note that the Salpeter type equation derived in the [11] from 3D-
reduction of BS-equation (LKMP version) can be obtained from the
equation (21a) if f;, »1 and put (xazaz)=(+++), ie the

components @7, @), @) are zeros. As to corresponding

normalization condition for the wave function it follows from (22)
putting f;;, =1

Now we represent function (p,(v'flaza?’) (p.G)as

1

3
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and the Lorentz structure of the three-body confining interaction
potential we take the form [14]:
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and ais negative constant, v?is increasing positive function of

quarks coordinates.

As to the two-body interaction operator it is taken in the form
given in the review paper [15] concerning bound qQ -systems
problem:
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where “og”, “c” and “T” means “one gluon”, “confinement” and “t-
Hooft”, accordingly.

Then the system of equations for wave functions y{%*2*) (p, @)
can be obtained from the equations (21) and has the form:
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As to the normalization condition for the functions
;(,E,’j‘l"‘Z%)(r), G) it can be obtained from the condition (22) substituting
(23) expression. As aresult we have:
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from which it follows the normalization condition for the LKMP
version of 3D-reduction of BS-equation if f;, — 1.

4. THE SOLUTION PROCEDURE FOR OBTAINED
EQUATION

Main problem which must be considered below is dependence of
existence of the stable solution of the system of equations (25) on
Lorentz structure of the two and three quarks confining interaction
potentials. For this (ij ) quarks confining interaction potential is taken
in the form used in [16] for investigation mass spectra of bound qQ
systems

Lo 2
Vij (B, Tj) =—ay + by ‘ri —fj‘ : (284)
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2 2
8j =3 % (M Vo, by = 3% (m,J)
ij
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with free parameters. @y, A and n; (number of flavours). Note that
appearing the 2/3in a;; and by; instead of 4/3 for g systemsisrelated
to color depending part of wave function. Asto three-quark confining

interaction potential v>) we take the form suggested in [14], but
instead of linear type interaction we use oscillator type interaction

VO @, &, B)=b(i -1 + |5 B +[B -1, (29)

which is practically more easily solvable and compatible with two-
body model.

Below we consider bound qqq -systems with m ;=m, =m, which

included all observable baryons mentioned in the introduction
N, %, A, E, A, Q and use variables p=py,, G=0G3=p; (cm.).
Then in the momentum space from (28a) and (29) we have:

P A 1 3 12) 0 0
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0 0
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If we put the expressions (30a,b) in the right side of the systems of
equations (25) then there will appear the following type of integrals:

1(c, d)= Ia*’ ad' {6@ - d-d)B(E, d; ¢, d)x

xN(¢, d)yy (€, d)}d3%cd®d’,  (31a)

which taking into account the boundary condition for the bound state
wave functions x(cy ;. dy ,, =) =0 arereduced expression
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As aresult the system of equation (25) will be reduced to the system
of the second order differential equations (nonlinear over M) for wave

functions ;((“1"‘2“3) (p', §).
For the wave functions we use the partial wave expansion:

Z\ma2%3) (5, ) =

. <f>,a

1l LS12SIM,

1 (24124124
amn@n?wMQ R (p, a),  (32)

where 1, and I, are orbital momenta corresponding to moments
pand G, respectively, S;, istotal spin for the two particles system
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(12), Land S are total orbital momenta and spin of the system (123).
As a result from above mentioned system of differential equations for

the function ;(,Ej‘laZ%)(ﬁ, G) it can be obtained the system of
differential equations for radial wave functions Rl(ol‘lgi%)LSJ (p, 9).
p'q

For calculation of the mass spectrum of bound (u, d, s) quark
systems (N, 2, A, E, A, Q baryons) we will use the solutions of the

differential equations obtained from system of equations (21a,b) in the
non-relativistic limit. For this reason it must be used the
approximations:

@; > My +——; (inleft side)

w; > m, X —>1 h —>m, 57 —>0; (inrightside)  (33)
U 5 ) other components are equal to zero.
As a result taking into account only qq -interaction confinement
potential we obtain well known equations (m; =m, =m)

=2 2 2
p q Hp@p 2 2
+ - + + A, +—=ag (Am°)V, +
[(513p 5Bq) (2mp qu) > p 3055( Vo
,Uqa)q2 4 2 =
+ Aq t3% ((m+m3)“ Vol xmnr (P, ) =0, (34
where
M —(2m+my) =g+ L )
3= 8, TEB Hp Ty Mo 2m+mg’
wp = o, | 2lars (4M2) + ars (M + mg)?)— 2],
P 3 m+ms,
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The wave function y\ng (P, G) isrepresented analogously to (32)

2anr (B @)= X (B[lmy )(]lgmg ) Rot, (DR, (@), (36)

NpNglplgMpMy
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Rogiy (@ =06° Ry, (). Y =qi, Go = /Mg
0
1 2F(n+|+%) | 1, ,
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2
Sy + 50 (Am° Vo = (20, +1y + P)ary, ey, +
2
#5005 (M ma) Vo = (20 +1q + ). (37¢)

Now using the radial wave functions (37a) as a basis functions the

unknown functions , Rl(ﬁlgi?)w (p, q) can be written as
p'q

1,11
NpNg
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and putting it in the system of equation mentioned above we obtain
the system of agebraic equation (nonlinear over M ) for coefficients

Cé“ﬁ“g‘j‘;)m (M), solution of which gives mass we are looking for.
pq
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