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Use of singularity points in method of reconstruction 3d surface from 2d shading
image
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Annotation
Reconstruction of 3D geometrical shape from its 2D shading image is main problem in
Computer Science. A new approach in solving of this problem is considered. There are
complex surfaces, which have singularity points: fold, cusp, pinch points. We construct
shading images of neighboring surfaces of these points. These images are used as
geometrical primitives in segmentation process.
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Introduction
The construction of geometric model of three dimensional surface from its two dimensional

shading image is one of the main problems in Computer Science. There are some approaches to
solve this task. One approach is based on Berthold K.P. Horn research [1]:

An image of object will exhibit shading (gradations of reflected light intensity) which can be
used to determine its shape, given only a picture from a single viewpoint. At each point in the image
we know only the reflectivity at the corresponding object point. Let’s consider 3d coordinate
system. The z-axis is directed to the image, x and y-axis are paralleled of the image plane.

Method of reconstruction
It is possible to construct tangent plane on each point of smooth surface. We are interested in

orientation of this plane to receive information about shape near this point. The normal vector,
which is perpendicular of tangent plane, is used to determine this orientation. We can describe
surface of object by means of z value. This value is depended on x and y value. We must define
normal of surface through z and partial derivative z by x and y. We can express normal by way of
small increment δx along x-axis from given point (x, y), z value is changed

δz=(δz/δx) . δx +e.
The first partial derivative of z by x - p is incline of surface along x-axis, and by y - q is

incline of surface along y-axis. The vector product of this two incline vector is normal vector n=(-p,
-q, 1).  The (p, q) is gradient vector of surface.

Fig. 1 Illustration of variables used in the definition of the reflectivity function.

Let’s describe Reflectivity function: consider a surface of size ds. See fig1. Incident ray
creates i angle and emitted ray created e angle at normal vector. Let the incident light intensity be I
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per unit area perpendicular to the incident ray. The amount of light falling on the surface element is
then I1 

. cos(i) ds. Let the emitted ray have intensity I2 per unit solid angle per unit area
perpendicular to the emitted ray. So the amount of light intercepted by an area subtending a solid
angle dw at the surface element will be I2 cos (e) ds dw. The reflectivity function is then defined to
be I2/I1.

For many surfaces the fraction of the incident light which is scattered in a given direction is a
smooth function of the angles involved. The shape can be obtained from the shading if we know the
reflectivity function and the position of the light-source. The reflectivity and the gradient of the
surface can be related by a non-linear first-order partial differential equation in two unknowns. The
recipe for solving this equation is to set up an equivalent set of five ordinary differential equations
(three for the coordinates and two for the components of the gradient).

A curve traced out by solving this set of equations for one set of starting values is called a
characteristic strip. Starting one of these strips from each point on some initial curve will produce
the whole solution surface. The initial curves can usually be constructed around so-called singular
points, where the reflectivity uniquely determines the local normal. The singular points are brightest
or darkest points on the image of the surface. Unfortunately, differential equations can not be solved
from these points, because value of derivative of coordinates is zero. It is possible to build sphere
around these points and starts solve equations from bound of this sphere. But the sphere is not
enough to modeling difficult surfaces.

We consider more complex surfaces by means of singularity theorem [2].
Let p is a point on an image plane of object appropriate to a point � 1 of object. We can draw a

small circle in image a plane of object with the center in p point. If the piece of our object
represented by this circle, itself looks like a circle, then this point p is regular point. Each point on
the normal surface is center of spherical area. Surface within this area is represented as image of
stable mapping of image plane to the object space. If the image of stable mapping looks as strongly
curved disk at the given neighborhood point, then this is singular point. There are three kinds of
singular points of stable mapping: The surface neighborhood of double point is represented as two
cross sheet planes. The neighborhood of triple point is represented as three transversal cross sheets.
Pinch point is another singular point. Every neighborhood of this point intersects itself. We have
Whitney umbrella surface, which shading model was constructed. Red point is the pinch point. See
Fig.2

Fig. 2. Shading image of umbrella surface

The canonical form of umbrella is (x, y, z)=(r . t, r,t2 ), where x, y and z are local coordinates
of object space, r and t – coordinates of image plane. It is described geometrically how we get pinch
point: when r crosses the origin of coordinates, parabola r2 . z – x2=0 folds, passing through a double
line, and opens again, as its plane goes forward along an y axis.

An important visibility feature of the object seen from a large distance along a certain
direction is its contour generator, also known as outline, or profile.
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The apparent contour is the projection of the contour generator onto a plane perpendicular to
the view direction. In many cases, drawing just the visible part of the apparent contour gives a good
impression of the shape of the object. Generally, this apparent contour is a smooth curve, with some
isolated singularities.

The first singularity is Whitney fold [3]. This singularity takes place at plane projection of
sphere in points of equator. This mapping is expressed in coordinates as y1=x1

2,  y2=x2. Where y1 y2

is coordinate system of image plane, x1 x2 is coordinate system of object space.
The second singularity is Whitney cusp.
Canonical form of cusp surface is z=y3 –x . y, see fig 3.

Fig 3. Cusp surface

We project cusp surface on image plane (r, t). This surface has fold points, where tangent
plane is perpendicular of z-axis. The projection of these points on image plane has semicubical
parabola, which has cusp point P at origin. A cusp is a point on a continuous curve where the
tangent vector reverses sign as the curve is traversed. It is described geometrically how we get cusp
point: when cubic curve goes forward along x-axis, x value is changed: if x>0, we have two critical
point; at origin of coordinate system - x=0 and we have cusp point; if x<0, we have not critical
point.

The shading image of contour was constructed,  see fig 4.

Fig 4. Shading image of cusp contour

Shading surface was constructed, see fig 5. Cusp point is marked as red point.



Georgian Electronic Scientific Journal: Computer Science and Telecommunications #1-2003

6

      Fig 5.

Marking the feature points of surface and receiving shading image from several angles is used
in second approach. In case of complex surface, for example- human face, it is not possible to mark
points everywhere.

Conclusion
Our method takes into account both positive sides of these approaches, but instead of

differential equations, we use algebraic equations of predetermined sorted surfaces.
On the first step we define outline of the surface and receive rough model. On the second step

we mark feature points and these neighbor areas. Then we compare them with predetermined sorted
surfaces such as cusp surface or sphere by means of least squares fitting method.

Then we step by step change geometrical parameters of already defined model until we will
receive real shading model.
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Appendix

Algorithm:
Let p be a critical point on (x, y) image plane

            Let be 321 ,, aaa  parameters of deformation

            Let )....,( 2211 nn yxyxyx coordinates of fold critical points near cusp point p

Repeat
 Find p:
  Intensity (p) =max
 Analyze neighborhood of p:
  Move origin of coordinate system of image plane on critical point
  If  D (p) = 0 (derivative), there is degenerate singular point - cusp point
    Find deformation: F(x) = 32

3
1 axaxa +⋅+⋅

            Let A is matrix of values of basis functions
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If D (p) ≠ 0 there is Morse critical point – fold point
      Find deformation: F(x) = 2
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 Until no other critical points.
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