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Abstract
This work investigates theoretically four-electron QD in 2D spaces using the method of
hyperspherical functions, taking account of inverse square potential between particls.
Harmonic oscillator has been used as confinement potential.
We have calculated that the binding energy of four-electron system is monotonically
depends on the global quantum number. The account of the inverse square potential
considerably changes the disposition of energetic levels.
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 In recent years there has been a great deal of (as well as a growing) interest throughout the
physics community in quantum computation and quantum computers (QC) [1], that  also direct
conected with  artificial atoms i.e. quantum dots (QD)’s. (QD)’s are a small number of two
dimensional (2D) space electrons confined in semiconductor heterostructure [2]; A particular
motivation for studying the properties of few electron quantum dots is their relevance to the rapidly
developing field of  quantum computing [3].

One- and Two- electron dots in the two-(2D) and three-(3D)  dimensional spaces [4]
respectively have been studied in detail.

The results on three- and more electron quantum dots were (experimental as well as
theoretical) are described in [5]; though by the end of the 20th century considerable results have
been obtained on few-body systems taking advantage of using nonmodel approach [6], which
enables us to avoid the model approach to simplify the task and instead of postulating to receive a
wave function by the solution the equations in a certain approach. As we know few-electron QD are
studied theoretically with the above mentioned approach in [7] (where three-electrons QD in the
2D-space is considered with logarithmic potential between the electrons),  in [8] (where four-
electrons QD in the 2D-space is considered with Coulomb potential between the electrons) and in
[9] (where three-electron quantum dot with inverse square potential between particls in 2D space.

Below we shall generalize the hyperspherical function method suggested in [8] to study four-
electron QD problem in the 2D-space. At the same time we use inverse square potential between
electrons and parabolic type potential - as confinement potential.

Consider four identical particles. The appropriate Jacobian coordinates may be represented by
the expression:
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We introduce the hyperspherical coordinates by the following relations:

βρ=βαρ=βαρ= cosZ  ;sinsin|Y|  ;sincos|X|
���

 where ∈
�
,� [ ]2/�,0

Let us expand the four-body wave function in the system of the center  mass in a four-body
hyperspherical functions:
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(l)≡(l1,l2,l3,l12) are the appropriate orbital moments, K3, K – three and four body
hypermoments respectively. )(3)(
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After inserting (2)  and (3) in Schrodinger equation in the system of center mass in the 2D-
space we obtained the following set of equations:
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and
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where b-1/2- is related to the confinement region of electrons in quantum dot, 2F1- is a

generalized hypergeometric function, B - is Beta function, j
KL
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( -is unitary coefficients

of Reynal-Revai [10].
Equation (5) describes the motion center mass of the system. Equation  (4) describes relative

motion of four-electron confinement system.

We have solved equation (4) in two ways and in both cases we made calculations for zero
approximation.
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1. In the case of no interacting electron the solution of equation (4) takes form:
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We expand exact hyperradial  function in terms of basic functions  (7):

                                                        � ρψ=ρχ
N

Kl
KN

Kl
KN

Kl
KN a )()( 333 )(0)()(                                              

(9)

where 
3 4

m=µ , N=0, 1, 2,... is global quantum number, the coefficients 33Kl
KNa  obey the

normalization condition �
∞

=

=
0

2
133

N

Kl
KNa . Then the energy eigenvalues of the relative motion are

obtained from the requirement of making the determinant of the infinite system of linear
homogeneous algebraic equations vanish:
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where 33KK);l)(l(
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′′′  is matrix elements of total potential energy.

We have calculated the total energy of the system which equals to sum of motion energy of
the system mass center and relative motion energy.

2. In the case of interacting electron the exact solution of equation (4) takes form:
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Where G1 equal expression (6) for zero approximation.
Binding energy is:
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The dependence of the binding energy of the four-electron system upon the global quantum
number (for the ground state S=0) obtained in the results of the solution of  expression (8), equation
(10) and equation (12) are given in the table.
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Dependence of the binding energy of the four-electron system in 2D space upon the global
quantum number ��

Global
quantum number

N

Binding
energy for

confinement potential
N
oE �a.u���

[expression (8)]

Binding energy for
taking into account inverse

square  interactions  E��a.u��
[equation (10)]

Binding energy
according equation (12)

taking into account
inverse square

interactions, E��a.u��

0 6,3756 6,3756 9,4746
1 10,0188 11,4697 12,6596
2 13,6520 14,2334 15,8446
3 17,2952 18,1268 19,0296
4 20,9384 21,2632 22,2146
5 24,5716 24,9832 25,3996

As it is seen from the table the four-electron system binding energy calculated�by the above
mentioned two methods�are depended monotonically upon the global quantum number, but they
differ from each other and this difference decreases with the increase of the global quantum
number. ��

We conclude that the four-electron system binding energy depends monotonically upon the
global quantum number. The account of the inverse square potential considerably changes the
disposition of energetic levels.
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