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Abstract:

We have considered the basic dynamical homogeneous system of partial differential
equations of generalized Green-Lindsay couple-stress thermoelasticity on the plane for
homogeneous, izotropic elastic media with the centre of symmetry. We have constructed
regular solution of the boundary problems on the lineln the works are obtained in
guadrates the solutions of the following boundary-value problems of the generalized Green-
Lindsay theory of couple-stress thermoelasticity :

1. On border of area are given: the component of normal of displacement vector, the

component of touching of voltage vector, rotations and flow of heat.

2. On border of area are given: the components of normal voltage vector and the

couple-stress, the component of touching of displacement vector and heat.

Keywords: couple-stress, thermoelasticity, boundary value, izotropic, quadratures,
fundamental solutions.

The basic dynamical homogeneous system of partia differential equations of
generalized Green-Lindsay couple-stress thermoelasticity on the plane for homogeneous, izotropic
elastic media with the centre of symmetry has the form [1]

2

(u+a)Av+(A+ - a)graddvu + 2arotu, — ygradu, — yrlggradu4 =c

at?
9°v,
(v + B)au, + 2arotv - dau, = | 7 (1)
2
U, _ 100, 1,00, —nidivu =0

or ot o at* ot
Where, v = (u,,0, ) is displacement vector, u,_is characteristic of the rotation; _u, isthe

temperature variation; x = (x1 x2) is the point of the twodimensional Euclidean space _R?, tisthe

time, A-is the twodimensional Laplacian operator. ¢, u,A,a,0¢,1,v, B, y,n -Constants whoch satisfy
the following condition [1]:

¢>0,u>0, 34+2u>0,a>0,0/>0, | >0,V>0,’3>0,%>0_

I,,7,-The constants of relaxations [1]: 7, 27, >0.
With the first system we discuss (interesting from the practical point of vew) the following case
about which depend on thet (time).
Along with (1) we shall consider some possible (nteresting from practical point of view) cases when
v (x,t), k=14 dependsonthetimet:

U, (x,t) = 2i Ie"uk (x, r)dr ,T =0 +iq, ¢ >0-the genera dynamical case (representation by
the Laplace-Méllinintegral). Thesystem (1) in both cases towards the vector
U =(uusu,)" =[u,],,, —comesto thefollowing form:
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(t+a)Au+ (A + - a)graddivu + 2arotu, - y, gradu, —¢7u =0

(v + B)Au, + 2arotu — 4au, =0 2)

T .
Au, ——u, —npmdivu=0

Ve n
.
where, y, = y(1+1,7), i:i(1+ror), rotu, = %—% —isvector,
or, ol ox, 0x,

rotu:[%—%]isscalar.

%,  0X,

For the component voltage vector and the couple-stress we have:

. 0 ou, .
T :[/]d|Vu_yru4]ij +(,u+a)a—;ik+(u—a)a—’—2ae]ku3

j k

ou, . =
=v+p)— k=12
#e = ( ﬂ)axk jk=1
0,j=0
where, £, =11, j <k , 9J; —symbol of Kronikery.
_11] >k
Let now:

D ={x=(x,x,)OR?, x, = 0} -is hemi- plane.
Now, we consider the regular value U = (u,u;,u,)" =|u,|,, intheD of the boundary
problems for the system(2), on theline x, =0 :

problem 1V: On border of area are given: the component of normal of displacement vector, the
component of touching of voltage vector, rotations and flow of  heat:

012 = ¢1(X1)’ u3 = ¢3(X1)
ou
u, :¢2(X1)1 G_X::¢4(X1)
problem V: On border of area are given: the components of normal voltage vector and the
couple-stress, the component of touching of displacement vector and  heat:

0
U, =‘//1(X1) a_;lszws(xl)

O :wz(xl) u, :41/4(X1)
Where, ¢,(x,), ¢.(x) j=14 -isthefunctiongiven ontheline x, =0.

With the condition of the problem IV ontheline x, =0, we get: rotu, aidivu —from the
X2
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following equations:

0'12:(/1—0’)3X1+(,u+,3) o, 3=¢1(X1)’

M) =2 (¢1 (u+a)af:+2a¢3j

aXZ X;=0 ,U a
rotu % - aul
w0 \ 0% 0%,

fromthe equations (3) of the system (2) ,we get:

0 = 05(%)

i(A r ]u —maidlvu after thelimitinthisegua ,when x, =0, we obtain:
X

0X, 4 5
idi\/u :i A—L¢ :¢(X)
0x, weo T ar, )7t TV

where, ¢.,¢,_ X, =0-isgiven of function ontheline x, =0.

With the condition of the problemV ontheline x, =0, we get: ai[rotug], ;_u divu —
X X

2 2
from the following equations:
. d
O :/]d|VU+2ﬂa_uz_yru4 :1//2()(1)
2
0 0
4 (/l+2u)au ¥, =,(x)
X2
% -1 A9 -
AR T A AR SA
. d
aw =S e =y (x)
0°u oy
——|rot = 3 = 8 =
, [rO u3]1 om0 6X22 om0 6x2 4[/7()(1)
0 0 (du oy
R t =-——__ | =8 = - 3 =
oloul) == [%e] =%y
ol | _ow| _oy_
0, | wo O] oo O, =4s(x)
ol _ou| oy _
0%, | o OX,| we  OX, =lx,)
where, ¢, (xl) (j =5410) _ isgiven of function on theline x, =0.

Sametime, with (2) force, the vector (divu,u4)-is the solution for the Neiman’ s problem in the
space D :

10
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4+ 204)8 - cr?Jdivu - y,Au, =0
=p,(x)  (4)

x2=0

4 9 =g.(x) -2
(A—ijw —nrdvu =0 () 0X, " e a9 0X,

u,

T

The problem is solved in quadratures|2].
the vector - (rotu,us) is the solution for the Dirixle€'s problem inthe space D :
[(,U +a)h - az]rotu —-2alu, =0
{Zmotu + [(v + B)A - (4a +1 rz)]u3 =0
The problem is solved in quadratures[1].

Thus, the boundary value problem IV comes to the boundary value problems for the systems (4)
and (5), inthefollowingform,ontheline x, =0 :

(5) rotu=gy(x) u,=¢.(x) (5)

=9, (Xl)

x2=0

problem A: aidivu = ¢, (x), iu4
X

2 x2=0 a 2

problemB:  rotu = @, (x,), u; = #,(x,)
with the solutions of the problems A and B it is possible to construct the solution of the problem
IV in quadratures.
Redly, let the problems A and B have the solutions
Let'sdiscussthe plots tothe first equation of the system (2) on the axes: x; and X, , we have:

cr? ou, . . .
Au, - u, =Fix,x,) —= 6)— The Neimani’s problem for the Gelgomci’s
1 /,l+a 1 l(Xl 2) axz ¢l2 ( ) p g

eguation. Where,

Fy(x,,%,) = ‘Midvu— 20 0, Vi Ou The function given.

H+a 0x H+a ox, u+a ox
2

Au, - ,uc-rrauz =F,(x.,%,), u,=¢, (7)- TheDirichle'sproblem for the Gelgomci’s
equation. Where,

Fy (%, %,) = ‘MidVLH 20 U, Vi Ou, The function given.

H+a 0X, H+a ox,  u+aox,
From equation 2 of the system (2), we have:

2
Au, - 'z :;a u, =F,(x,x%,), u,=¢, (8)- TheDirichle'sproblem for the Gelgomci’s
%
eguation. Where,

Fy(x, %)=~ |/2+a,8 rotu — The function given.

From equation 3 of the system (2), we have:

(A—iju‘1 = F4(x1,x2), % = (xl) (9)— The Neimani’ s problem for the Gelgomci’s

T

equation. Where,
F4(X1, x2) = nrdivu — The function given.

11
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The problems (6)-(9) are solved in quadratures.
The formulaof thesolution for to problem (6) will give the following form:

u, = 7_1TIH(i T‘/%u+a)|x_ y|]¢12 (y)dy—%T [[e.(x2F.(2)dz  (6)

X9 >0

The formula, of the solution for to problem (7) will give the following form:

+o00

b, = 2 [t (1S a0y~ ([ 2R e (7)

—o0 X9 >0

The formula of the solution for to problem (8) will give the following form:

o= 2T i) vy - 2 [l (e )

Theformula of thesolution forto problem (9) will give the following form:

.= [H{in 7, o by [le R e (9)

X,>0

The vector (u,rotus,,u, )-issolution thefollowing system:
(1 + ) - ¢r?|u + 2arotu, = y, gradu, - (A + - a)graddivuu
{— 2aAu + [(V +p)A - (4a +1 rz)]rotu3 =0 (10)
Where, the vector (divu,u,)- is the solution for the Dirixle's
[(/1 +2u)A - crz]divu -y,Au, =0

problem: ( r

A- ju4 ~prdivu =0 (11) divu = 4 (x,) u, =, (x) (12). The problemis

4
solved in quadratures[2].
Thus, the boundar y value problemV comesto the boundary value problems for the systems (11)
and (10), inthefollowing form,on theline x, =0:

problem C: divu =4 (x,). u, =,(x,)
d ou
roblem D: —rotu = L 2=

p 5 ou=10x) 2= =4s(x)

To solve the problem 1V (the problem V-solving similarly):

Let’srewrite the system (4) in the following form:
L(ox,7)u=0 (12)

where, v = (Ul,Uz) isvector, v, =diw, v, =u,,
(A+2up-cr* -y

L(ox,7) = - Ao a; (t2)

T

T

For the determinant of the Matrix L(0x,7), : we have:

r’c

T
A+2U)A - 2
( + ) T +6£

el ,

—y i = () + 2u)A2 -
}mr (A +2u) 5

-y.nrtA=
3

(A +2u)+¢r* + mr}A ¥ ;; =(+2u)n+ A7 Na+2,)

T

r
o/

T

= (A +2u)’ {
Where,

12
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2

A2+/]2:T+CT ,7Tyr
L 2 0/, A+2u /1 +2u
¢r3
/] DH P 13
“or, (A +2u) 0
Letsdiscussthevectors o™ = (0,%,0,%) 0@ =(v,@,0,?) (14)

Where,

ol

v,? = -y ng, v, = [(/1 +20)A - cr2]¢ (15)
@ -isresearching scalar function.
If scalar ¢ - satisfy the following condition:

(a+47 )(A+/] )¢=o (16)
then, thevectors; oW = (ul(l) 0, ) ( v, ) are the solution of the system (12).
From the system(16) we get:

Ul(l) - (A_ T j¢’ Uz(l) =-nrg

é(x,7)= iak H, (xik|x|),

where, H 0(1) (/lk |x|) are Hunkel functions (the first knd the zero row), a, — are constants which
satisfies the following conditions:

22: a =0
Z A 217(/1 I+ 2u)

Then, 2th rows ¢(x, r) — partial production close to zero area have speciality of £n|x| —form:

2i

X,T)= ' AH O (X)) -H, 21|
e T e | WO UL RUTR G B
where, [X = /% +x,”

After the putting system (17) in the system(15),we get:

w'= (A ; ] A+ 2;5(; X ){Hom b= -
o 2;1)2(!/112 _/]22){{/112 + azero(l)(/l1IX|)+£/122 * a;—T]Ho(l)(AzM)}

S0, we obtain:

13
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st i e
o (L4t L AR )

o i i
2i 2
e N GO
2i 1 1 —
U () [(/1"'2#A CT] IT(/]+2 )( ){Ho()(/‘1|xl)_Ho()(/‘21|x|)}_

= 2#)?(&2 _/122){)!22 v 2;1 J (1, ]x)- ( f;{ JHO“) (Allxl)}

Let’s construct matrixes of fundamental solutionsfor system (12):

00 @

0,0 0@

, [A22+§]ﬂ2—(/lf+§]ﬂl v 6 -2.7p.)
A+ 20N -A,7) 2 :
2 AN - ) (A#—“ ]ﬁz—(/lh—“ ]ﬁl

A+2u A+2u

®(x,7)=

where,

d(x,7)=

where, B, =H,"(A,|x), k=12
Let’s construct the conjugate operator :
(A+2up-¢r®>  -npr

L(ox,7)= ,a AT (9)

(19) Isidentical of the transpose matrixe L(ax, r).
Let, v=(v,v,)and 7=(5,,0,)-are regular vectors inthe spaceD* [ R? bounded by closed

line 7.
Let’suse Green's formula:

I(UT Lo-o™ Lu)dx :j (UTfU - U“Tu)df (20)
v[\)/here, é

ou ov, du
T A+2 L 2 2| (21
u((w)a -1, %% ()

OU 00, O0U
A+2 -y —L4+ "2 22
(( + o), yran+an] (22)

where,  T-istranspose operator,

14
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(/l +24) aa -V, aa . (A+ 2#)6i 0
0 -V, — —]
an on on

we get the formula of representation of regular solution u(x):
271(A + 2u)u( JCD x—y, 7)Tu(y)d, /- I'ﬁf)(x— Y, r)] (yd, - ICD x-y,7)Lo(ydy  (23)

where,  ®(x,7) isfundamental solutions for operator L(0x,7)
We have:

o' (x-y,7)=d(x-y,7)
Let’s consider the potentias:

V(x; ¢) = J(D(x -, r)¢(y)dy£ —the potential of the simple layer,

W(x;) = J [‘F(an, y)o(x-y; r)]T @(y)d, ¢ - the potential of the double layer .

Problem A. Construct the regular solution of system L(0x, 7)v(x) = 0 onthe plane X, =0,
(Z) = (2),

where,  f =(f,, f,)-is vector-function bounded in the |nf|n|te.
Let’srepresent the solution of problem by the simple potential:

V(x I o(x- y;7)p(y)dy
For ¢(y ) we get:
A +2p)p I T(on,y, )o(z- y:7)p(y)dy = F(2) = H

Ontheplane weheve:  T(an,y,)d(z-y;7)=0  (24)
With (24) force in the (24) we get:

which satisfy on theline X, =0 thefolloving condition:

(A +2:u)f1 —A 1,

e

and we get:

Therecived solution is unique.
Redly, let the similarity problem A have the sol utionu(o)( ) ,then with (23) force we heve:

2 )I+2,u J.Cbx yr)TU () (26)

+00

A+ 2p)T00( jT Jo(z-y:r)Tu (y)dy

With (24) force in the (26) we get: v )(x)—O

15
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Let’srewrite the system (5) in the following form:

M (dx,7)h =0 (27)
where, h=(h,,h,) isvector, h =rotu, h, =u,,
Nu+a)p-¢cr® -2an ,
M(ox7)= 20 (v+B)n-(da+177 27)

The system(27)-solving similarly of system (12).
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