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Abstract

We investigate the notion of computability from the point of view of Quantum Computation. A
quantum algorithm for the holonomic Quantum Computation is considered from the point of view
of connection in the differential fiber bundle over the parametrized space of controls and the graph
(in the case of discrete algorithm). The noncommutative differnetial geometric approach to the
quantum computation process is considered as a special case of the holonomic Quantum
Computing, which allows to involve in the model of holonomic QC the classical computing (finite
state machine) too.

1. Introduction

The application of quantum physical principles to the field of computing leads to the concept of the
quantum computer, in which data is stored not as bits in conventional memory, but as the combined
quantum state of many 2-state systems of qubits.

In this chapter we introduce the theoretical foundations, and basic concepts of a quantum computer
and several models of quantum computation.

The basic idea of modern computing is the view of computation as a mechanical, rather than a
purely mental process. A method, or procedure P for achieving some desired result is called
effective in case when [1]:

1. P is set out in terms of a finite number of exact instructions each of which is expressed by
means of a finite number of symbols;

2. P will, if proceeded without error, always produce the desired result in a finite number of
steps;

3. P can be carried out by a human being without aid of any machinery save paper and pencil;

4. P requires no insight or ingenuity on the part of the human being carrying it out.

Alan Turing and Alonzo Church formalized the above definition by introducing the concept of
computability by Turing machine and the mathematically equivalent concept of recursive functions
with the following conclusions:

Tur ing’s thesis: Logical computing machines (Turing machines) can do anything that could be
described as purely mechanical [2].

Church’s thesis: A function of positive integers is effectively calculable only if it is recursive [3].

The above statements are equivalent, and therefore, they are commonly referred to as the Church-
Turing Thesis which defines the scope of classical computing science.

Despite its operationalistic approach, the above computability concept doesn’ t have much in
common with the continuous nature of physics, so to construct a computing machine M, we have to
introduce a labeling function m which maps the analog physical states (e.g. the tension of a
capacitor) to digital computational states (e.g. the value of a bit). The digital states have to be
strings over some finite alphabet A.
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Since the above definition of computability requires a finite number both, symbols and instructions,
the labeling function only needs to apply on discrete intermediate machine states ...),(),( 10 tStS , so

the temporal evolution of the machine state )(tS  is mapped onto a sequence of computational states

},...,{ 10 nsss where each transition 1+ii ss �  corresponds to one function **: AAI i →  from a

enumerable set from a enumerable set I of simple instructions. The sequence of such functions
},...,{ 110 −= nIIIP  is called program.

The states 0s  and ns  are called the input and the output states. The machine ),,,( PAmSM =
thus implements the function

))(...()( 01100 sIIIsf n−= ���  with *
0 ))0(( ASms ∈= .

The above definition of a computing machine poses strong restrictions on the interpretation of
physical states. If we consider computation as a physical process, rather than a “mechanical”
manipulation of symbols as defined above, we can drop all restrictions in the definition which don’ t
have a physical equivalent.

As it is well-known, in quantum mechanics, the measurement of an observable O corresponding to
a Hermitian operator O is only deterministic, if a system is in an eigenstate of the operator O.
Following from the stochastic nature of quantum measurement, the labeling function m should be
replaced by a probabilistic operator *: AHM →  which randomly chooses a string s according to
some probability distribution ]1,0[: →sϕδ  with � =

s

s 1)(ϕδ .

Since it is not possible to non-destructively measure a quantum system and we are only interested in
the result of a computation, it is not necessary that a labeling is defined for the intermediate steps of
a computation, i.e. it is not required to “watch”  the temporal evolution of the system, as long as a
labeling for the input and output state is given.

While the transitions between the states iS  and 1+iS  still have to correspond to some operators iU

from a enumerable instruction set of quantum transformations, the operators iU  don’ t have to

directly correspond to functions on *A  (because of the reversibility of unitary operators, a direct
correspondence would only be possible for bijective functions **: AAf → ).

The temporal evolution of a quantum system is mathematically described by unitary operators, and
therefore, a quantum program },...,,{ 110 −= nUUUP  is a composition of elementary unitary

transformations.

Components of a Quantum Computer

Now, let us briefly describe the components of a Quantum Computer.

A classical, as well as a quantum computer, essentially consists of the following 3 parts: a memory,
which holds the current machine state, processor, which performs elementary operations on the
machine state, and some sort of input/output system, which allows to set the initial state and,
somehow, extract the final state of the computation.

Quantum memory. The quantum analogue of the classical unit of information (bit) is the quantum
bit or as it is reffered in the modern quantum computing literature, qubit. Just as a classical bit is
represented by a system which can adopt one of two distinct states “0”  and “1” , we can define a
quantum bit as follows: a qubit or quantum bit is a quantum system whose state can be fully
described by a superposition of two orthogonal eigenstates labeled by |0> and |1>.
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After this, the general state H∈�ψ|  of a qubit can be given by the linear combination of the above

basic vectors �+�=� 1|0|| βαψ  with the condition 1|||| 22 =+ βα . The value of a quantum bit can

be considered as a Hermitian operator �=� iiiN ||  over the Hilbert space 2CH = , or in matrix
representation
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�
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The expectation value of the observable N is given by the following expression
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Therefore, the value �	N  gives the probability to find the system in state �1|  if a measurement is
performed on the qubit.

If we combine two qubits, we obtain a 4-dimensional Hilbert state with basis consisting of the
vectors ��� 01|,10|,00|   and  �11| . Consequently, the general state of the resulting system is

�+��+�= 11|01|10|00| δγβαψ   with 1|||||||| 2222 =+++ δγβα

While the state of a classical computer can be given as the distinct states of all bits in memory and
processor registers, the “state of a qubit”  is a meaningful term, if the machine state is the combined
state of more than one system. So, we can state that: the machine state of an n-qubit quantum
computer is the current state of a combined system of n identical qubit subsystems.

Generally, the machine state of an n-qubit quantum computer is given by
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Thus, the combined Hilbert space H is the tensor product of n 1-qubit Hilbert spaces:

n

CHHHH 2' =⊗⊗⊗= �

The eigenvectors �−10| ndd �  can be interpreted as binary numbers, with 0d  as least significant

digit. So, the general machine state can be written as
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The operator iN , which corresponds to the i-th binary digit is given by the equality

�=� −− 1010 || nini dddddN ��

and has the expectation value
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Processing units. In a classical n-bit computer, every computational step can be described by a
transition function nn BBI →:  , }1,0{=B , which takes the current state S of all bits as input and

returns the appropriate post instruction state 'S .
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As it is well-known from the quantum mechanics, the temporal evolution of a quantum system can
be described by unitary operators on the corresponding Hilbert space. For the case of n-qubit
computing machine, the general form of such unitary operator is
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If we compare boolean functions to unitary operators from a strictly functional point of view, we
can identify the following three major differences between classical and quantum operations:

• Reversibility: Since unitary operators are defined as the operators satisfying the condition
IUU =* , for each unitary transformation U , the corresponding inverse transformation is

*U . As a consequence, quantum computation is restricted to reversible functions. A
classical analogue would be the class of reversible boolean functions.

• Superposition: An eigenstate �=� k||ψ  can be transformed into a superposition of
eigenstates:

�=�=� � kUkU
k

kk
|||

'

'
'ψ

The mathematical explanation of this feature lies in the fact that the requirement

ijjUUi δ=�	 || *  is weaker than the pseudo classical condition

ijjjii jUUi δππππ =��	�		 ||||| *

which requires transformation eigenstates not only to be orthonormal, but also be of the
form �=� kkU π|||  with some appropriate permutation function π  over the space  nZ

2
.

• Parallelism: If the machine state �ψ|  already is a superposition of several eigenstates, then
a transformation U is applied to all eigenstates simultaneousely:

�=�� � iUcicU
i i

ii ||

This feature of quantum computing is called quantum parallelism and is a result of the
linearity of unitary transformations.

The basic instructions of a classical computer usually operate only on a very small number of bits
and are typically independent from the total amount of available memory. Therefore it is more
useful to describe those instructions not as boolean functions over the whole state space  nB , in the
case of an n bit machine, but as parametrized functions xf  over the space nB , where the vector

nZx ∈ only holds the bit-positions of the relevant arguments.

The meaning of the phrase “swapping the bits 3 and 5”  is clear on a classical computer, but this
meaning can’ t be directly adobt to quantum computing, because unitary operator operates on state
and single qubit doesn’ t have a state.

A quantum register can be defined as a sequence of mutually different qubit positions
�	= −110 ,,, mssss � , which is the quantum analogue of the above argument vector v. For  such

registers, can be defined a class of (n-m)! reordering operators sΠ  by the equalities:

�=�Π
−− 110

,,,|,,,| 110 nsssns dddddd ��
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After which we can formulate the following

Definition. The register operator U(s) for an m-qubit unitary operator 
mm

CCU 22: →  and a m-
qubit quantum register s on an n-qubit quantum computer is the n-qubit operator

ss mnIUsU Π−×Π= ))(()( *

with an arbitrary reordering operator sΠ .

Since there are 
)!(

!

mn

n

−
 possible m-qubit registers on an n-qubit machine, any given m-qubit

operator U can describe 
)!(

!

mn

n

−
 different transformations  U(s).

In analogy to boolean networks, unitary operators which can be applied to arbitrary set of qubits are
also referred to as  quantum gates.

A well known result from classical Boolean logic, is that any possible Boolean function
mn BBf →:  can be constructed as a composition from a small universal set of operators by

connecting the inputs and outputs to arbitrary bits in a feed-forward network. The most well known
examples of such universal sets of logical gates are },{ ¬∨ , },{ ¬→ , or }{ ∧ .

Unitary operators on a Hilbert space can be described as abstract rotations of this Hilbert space. The
general form of a rotation of a single qubit is
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Applying these set of operators to arbitrary 2-dimensional subspaces of a Hilbert space H, any
unitary transformation of this Hilbert space can be constructed by composition in at most
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)dim(H
 steps. In our definition of universal quantum gates we are restricted to subspaces

corresponding to quantum registers, therefore, in the case of an n-qubit quantum computer, we can
work with only n-possible 1-qubit subspaces and the corresponding sets of register operators

),,,()(2
ϕβαωiU . It is clear that for any i and j the corresponding register operators commute with

each other: 0],[ )()( 22
=ji UU , which implies that any composition U of the above register operators

gives the transformation of the form
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So, just as the NOT gate itself is not universal in the classical Boolean logic, to construct a universal
set of quantum gates, we require an additional 2-qubit operation, to create entangled multi-qubit
states.

One possibility for a nontrivial 2-quit operator is XOR which is defined as
�⊗� yxxyxXOR ,|,:| � . The matrix representation of this operator is
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As it is shown in [4], the set of operators }),,,,({ 2 XORU ϕβαω , is universal for the family of

unitary tramsformations. Furthermore, as the subset }),,,({ ''''
2

nU ϕβαω  is dense in

)},,,({ 2 ϕβαωU , for such set of parameters that the quotients between them are irrational, the

subset },{ 2 XORU  is universal for most operators 2U , in the sence that any unitary transformation
U can be approximated to arbitrary precision.

Input and output. As it was mentioned, the interpretation of computing as a physical process,
rather than the abstract manipulation of symbols, leads to an extended notion of computability, and
the concept of unitary transformations is an adequate paradigm for the computability in the physical
sence.

Unitary transformations describe the transition between machine states and therefore the temporal
evolution of a quantum system. The notion of a quantum computer as a computing machine
requires. however, that the evolution of the physical system corresponds to a processing of
information. Unlike classical symbolic computation, where every single step of a computation can
be mapped onto a bit-string, physical computation requires such a labeling only for the initial and
the final machine state. This requirement is in full accordance with that  interpretation of quantum
physics, which states that the setup and the outcome of any experiment has to be described in
classical terms.

As the machine state ψ  is not directly accessible, any physically realizable labeling has to
correspond to some observable (Hermitian operator).

One natural choice for such observable for an n-qubit quantum computer would be the classical
values of the single qubits with the Hermitian operators

1
1

10110 22),,,( −
−

− +++== n
n

n NNNNNNN ��

�=� −− 110110 ,,,|,,,| nini dddddddN ��

To set a quantum computer to a desired initial state corresponding to some boolean input string, it
suffices to provide means to initially set all qubits to |0> and then apply any unitary transformation
that carries this state to the desired one. Consequently, one of the important operators is the reset
operator, which is a constant operator and is defined as �=� 0||ψR .

Var ious Models of Quantum Computation

In classical information theory, the concept of the universal computer can be represented by several
equivalent models, corresponding to different scientific approaches. From a mathematical point of
view, a universal computer is a machine capable of calculating partially recursive functions,
computer scientists often use the Turing machine as one of the models, in electro-engineering the
most popular model is logic circuits and in programming, the preferred model is a universal
programming language.

Each of  these models has its quantum analogue:

Par tially Recursive Functions ↔↔↔↔ Unitary Operators

Tur ing Machine ↔↔↔↔ Quantum Tur ing Machine

Logical Circuit ↔↔↔↔ Quantum Gates

Universal Programming  Language ↔↔↔↔ Quantum Programming Language
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The notion of computation as a physical process requires that  quantum computation can be
described by the same means as any other physical reality, which, for quantum physics is the
mathematical formalism of Hilbert space operator algebra.

The equivalent of the recursive functions (which is the mathematical concept of computability) in
quantum computing are unitary operators on some complex Hilbert space. As every classical
computation problem can be formulated in terms of  the partially recursive functions, any quantum
computation problem must have corresponding unitary operator. And the computational algorithm
consists of the algorithmic decomposition of this unitary operator into elementary operations, which
itself are some unitary operators on smaller complex spaces.

In analogy to the classical Turing Machine several propositions of Quantum Turing Machines, as a
model of a universal quantum computer have been made [5, 6]. In these models, the complete
machine-state is given by a superposition of base states |l, j, s>, where l is the inner state of the
head, j the head position and s the binary representation of the tape content. To keep the hilbert
space H separable, the infinite bit-string s should have the zero tail state condition, that is, only a
finite number of bits different from 0 are allowed.

The quantum analogue of the transition function of a classical probabilistic Turing Machine is the
step operator T , which has to be unitary to allow for the existence of a corresponding Hamiltonian
and meet locality conditions for the effected tape-qubit, as well as for head movement.

Quantum circuits are the quantum analogues to the classical boolean networks, with some major
differences:

• Since all quantum computations have to be unitary, all quantum computations have to be
unitary, all quantum circuits can be evaluated in both directions.

• Only n to n networks are allowed, that is, the total number of inputs has to be equal to the
total number of outputs.

• No forking of inputs is allowed. This follows from the fact that qubits cannot be copied, i.e.
there exists no such unitary operator: ��=�� ψψψ ||0||U  for 2| C∈�ψ .

To allow for implementation of all possible unitary transformations, a universal set of elementary
gates must be available, out of which composed gates can be constructed. Therefore, each m-qubit

gate describes up to 
)!(

!

mn

n

−
 different unitary transformations, depending on the wiring of the

inputs.

When we come to programming and the design of no-classical algorithms, we can look at the
mathematical description as the specification and quantum circuits as the assembly language of the
Quantum Computing.

As classical programming languages, quantum programming languages provide a constructive
means to specify the sequence of elementary operators, while allowing nested levels of abstraction.
In its simplest form, a quantum algorithm consists of a unitary transformation and a subsequent
measurement of the resulting state. For more traditional computational tasks, as e.g. searching or
mathematical calculations, efficient quantum implementations often have the form of probabilistic
algorithms. More complex quantum algorithms, as e.g. Shor’s algorithm for quantum factoring can
include classical random numbers, partial measurements, nested evaluation loops etc.

A formal way to describe the classical control structure, is to consider quantum operations as
special statements within a classical procedural language. Therefore any quantum programming
language has to be universal programming language.
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The Quantum Adiabatic Algor ithm for  the Hilber t’s Tenth Problem

The halting problem for Turing machines is a manifestation of undecidability: a Turing computation
is equivalent to the evaluation of a partial recursive function, which is only defined for a subset of
the integers. As this subset is classically undecidable we cannot determine in advance whether the
Turing machine will halt or not.

The proof f the unsolvabilty of the halting problem is by contradiction with the assumption of the
existence of a computable halting function h(p, i) which has two integer arguments: p is the
encoded integer number for the algorithm and i is its encoded integer input. Formally, this can be
written as:
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0
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One can then construct a program )(nr  having one integer argument n  in such a way that it calls
the function h(n, n) as a subroutine and
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The application of the halting function h on the program r and input n results in
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A contradiction is clearly manifest once we put n = r in the last equation above. However, this
contradiction argument might be avoided if we distinguish and separate the two classes of quantum
and classical algorithms. A quantum function similar to the qh(p, i) above h can exist to determine
whether any classical program p will halt on any classical input i or not. The above contradiction
can be avoided if the quantum halting cannot take as an argument the modified program, which is
now a quantum program.

To investigate the decidability of the Turing halting problem in the framework of quantum
computability, consider the Diophantine equations and Hilbert’s tenth problem.

At the turn of the last century, David Hilbert listed 23 important problems among which the
problem number ten is the only decision problem and could be rephrased as:

Given any polynomial equation with any number of unknowns and with integer coefficients, device
a universal process, according to which it can be determined by a finite number of operations
whether the equation has integer solution.

Eventually, this problem was finally shown to be undecidable in 1970 by Matiyasevich [7] and the
result was formulated as follows:

the Hilbert’s tenth problem could be solved if and only if the Turing halting problem could also be
solved.

As the Turing halting problem is not solvable (as it was shown above), the Hilbert’s tenth problem
is undecidable.

Among the alternative models of quantum computation the quantum adiabatic process is the recent
proposal to employ for computation. The idea is to encode the solution of some problem to be
solved into the ground state �g| , of some suitable hamiltonian, 1H . But as it is easier to implement
the hamiltonian than to obtain the ground state, we should start the computation in a different and
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readily available initial ground state, �0| g , of some initial hamiltonian 0H , then deform this

hamiltonian in a time T into the hamiltonian whose ground state is the desired one, through a time-
dependent process

101 H
T

t
H

T

t

T

t
H +�

�

�
�
�

� −=�
�

�
�
�

�

The adiabatic theorem of quantum mechanics states that if the deformation time is sufficiently slow
compared to some intrinsic time scale, the initial ground state will evolve into the desired ground
state with high probability – the longer the time, the higher the probability.

The quantum algorithm with the ground-state oracle is thus clear:

one starts, for example with a hamiltonian

�
=

−−=
k

i
iiii aaH

1

**
0 ))(( αα

where *
ia  and ia  are the creation and anihilation operators for the corresponding Fock space. This

hamiltonian admits the readily achievable coherent state �=� kg αα �10 ||  as its ground state. Then

one forms the slowly varying hamiltonian H(t/T) which interpolates in the time interval [0, T]
between the initial 0H  and 1H . According to the quantum adiabatic theorem, the initial ground state

with certain probability will evolve into our desired ground state up to a phase.

In contrast with the classical algorithm, the quantum algorithm above will terminate in principle,
because the time interval T is always finite (even though sometimes it can be very long) and give us
the decision result for the Hilbert’s tenth problem.

One of the generalizations of the above described adiabatic approach to the quantum computation is
the holonomic quantum computation [9]. In this approach, the information is encoded in a
degenerate eigenspace of  a parametric family of hamiltonians and manipulated by the associated
holonomic gates. These are realized in terms of non-abelian berry connection and are obtained by
driving the control parameters along adiabatic loops. For a specific model (which in fact is
universal) it is possible to explicitly determine the loops generating any desired logical gate, thus
producing the universal set of unitary transformations.

The noncommutative approach to this construction allows us to involve the classical (discrete)
computing in the general model of holonomic quantum computing. In this model the classical finite
state automata can be considered as a discrete differential calculus on some oriented graph [8] and
the transition function can be considered as a connection on some fiber bundle over this graph.
Therefore, the calculation procedure (algorithm) consists of a motion along a finite number of nodes
of the base graph and the holonomy corresponding to the connection on the fiber bundle gives us
the desired unitary transformation (or recursive function) as a composition of the unitary
transformations corresponding to the nodes of the graph.
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