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ABSTRACT

The information capacity of wireless communication sys-
tems may be increased dramatically by employing multiple
transmit and receive antennas. In this paper, we consider
multiuser wireless communication system, employing mul-
tiple transmit and receive antennas. We assume that chan-
nel has been estimated reasonably well with training se-
quence or some blind method. We estimate symbols user-
wise by Maximum Likelihood approach (ML) considering
other users as interferers. Two models are considered for
the symbols of the interferers, corresponding to Gaussian
and discrete priors. In the latter case, in which the finite
alphabet gets exploited for the Multiple Access Interference
(MAI) symbols, a simplification for the posterior MAI sym-
bol probabilities is introduced based on Mean Field Theory.

1. INTRODUCTION

Multiple Input Multiple Output (MIMO) system has gained
much interest recently [3,6]. Deploying multiple antennas
at both, the base station and the remote stations increase
capacity of the wireless channels. The gain in capacity is
because of diversity, spatial multiplexing, interference re-
jection and array gain. In order to fully exploit the advan-
tages of an antenna array, one must know the channel that
will distort the signal as well as well as interfering noise.

Most commonly used receivers in communications are
follows:
Zero forcing (ZF) receiver separates cochannel signals but
at the expense of increase in signal-to-noise (SNR) at the
output of the receiver and because of noise enhancement
the performance of the ZF receiver degrades at low SNR. In
order to improve the performance of the receiver a natural
choice is to minimize the overall error, which results in min-
imum mean square error (MMSE) receiver. Better results
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can be obtained if some valid constraints are used for de-
tection. The third type of receiver is ML receiver but unfor-
tunately the computational complexity grows exponentially
in the number of users, in case of CDMA and in the num-
ber of antennas in case of MIMO systems. An alternative to
ML (by enumeration) technique is to increase the likelihood
function iteratively until local/global maximum is reached.
This iterative technique is called expectation maximization
(EM) algorithm. The EM algorithm is a broadly applica-
ble approach to the iterative computation of ML estimates,
useful in variety of incomplete-data problems, where algo-
rithms such as the Newton-Raphson method may turn out
to be more complicated. On each iteration of the EM al-
gorithm, there are two steps- called expectation step or E-
step and maximization step or M-step. The basic idea of the
EM algorithm is to associate with the given incomplete-data
problem, a complete-data problem for which ML estimation
is computationally more tractable.

In [8] joint channel estimation and decoding for lin-
ear MIMO systems has been carried out assuming short
training sequence for channel estimation. In [9] the authors
consider an algorithm based on Expectation-Maximization
(EM) for the problem of separating superimposed digitally
modulated signals impinging on an antenna array. They
found that their algorithm closely resembles previously pro-
posed methods based on Iterative Least Squares (ILS) tech-
niques [10]. They also used SAGE algorithm [11] to im-
prove the performance of their system. In this paper, we
consider the problem of estimation of symbols user-wise
(i.e., considering other users as interferers). We use two
approaches for its estimation. In the Gaussian prior case
[4], only the Multiple Access Interference (MAI) are mod-
eled as stationary (white) sequences. We use ML formu-
lation that gets implemented via Expectation Maximization
(EM) algorithm. Alternatively, we consider exploiting the
finite alphabet for the MAI symbols, leading to significant
MAI reduction capability. To simplify and to reduce the
complexity of the resulting EM algorithm in the second ap-
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proach, we consider the introduction of Mean Field methods
for the approximation of the posterior MAI symbol proba-
bilities. The paper is organized as follows: In section 2,
we define the communication model. In section 3 we de-
scribe EM algorithm. Section 4 describes user-wise symbol
estimation with Gaussian prior on MAI. In section 5, we
describe user-wise symbol estimation procedure using dis-
crete prior on MAI symbols. Conclusions are drawn in the
last section.

2. COMMUNICATION MODEL

We model a wireless communication system with K users.
Each user is equipped with N transmit antennas. The base
station has M receive antennas. We assume flat fading be-
tween each transmit-receive pair. We denote as com-
plex fading gain from the transmitter antenna to the
receive antenna, where is assumed to be
zero mean circularly symmetric complex Gaussian random
variable with unit variance. This is equivalent to the as-
sumption that signals transmitted from different antennas
undergo independent Rayleigh fades. It is also assumed
that the fading gains remain constant over the entire signal
frame, but they may vary from one frame to another. The
received discrete time signal at instant t can be written as

(1)

where , is the symbol vector.
, is the received signal,

is a Gaussian noise vector. is a vector
consisting of symbols transmitted from N transmit antennas
at an instant . . is the transpose operator.
Channel matrix is given by

(2)

where is as follows

...
...

. . .
(3)

3. EM FRAMEWORK FOR MAXIMUM
LIKELIHOOD ESTIMATION

First of all, we briefly describe EM algorithm. EM algo-
rithm [2,5] is an iterative approach to Maximum Likeli-
hood Estimation (MLE), originally formalized in ( Demster,
Laird and Rubin ). Each iteration is composed of two steps:
an expectation (E) step and a maximization (M) step. The
aim is to maximize the loglikelihood ,
where are parameters of the model and D are the data.

Suppose that this optimization problem would be simplified
by the knowledge of the additional variable , known as
missing or hidden data. The set is refered to
as the complete data set (in the same context D is refered
to as incomplete data set). Correspondingly, the loglikeli-
hood function is refered to as complete data like-
lihood. is chosen such that the function would
be easily maximized if were known. However, since is
not obsevable, is a random variable and cannot be maxi-
mized directly. Thus, the EM algorithm relies on integrat-
ing over the distribution of , with the auxiliary function

, which is the expected value
of the complete data likelihood, given the observed data
D and the parameter computed at the previous iteration.
Intuitively, computing corresponds to filling the missing
data using the knowledge of the observed data and previous
parameters. The auxiliary function is deterministic and can
be maximized. An EM algorithm iterates the following two
steps, for k=1,2,...., until local or global maximum of the
likelihood is found.

Expectation: Compute

(4)

Maximization: Update the parameters as

(5)

In some cases, it is difficult to analytically maximize ,
as required by the M-step of the above algorithm, and we
are only able to compute a new value that produces
an increase of Q at each iteration. In this case we have so
called generalized EM (GEM) algorithm.

4. USER-WISE CHANNEL-SYMBOLS
ESTIMATION WITH GAUSSIAN MAI PRIOR

The received signal is given by the Eq.1. We assume that
channel has already been estimated. Each user channel is
modeled as Gaussian vector which might be correlated in
space, i.e., between antennas, but are assumed independent
between users. The channel vector for user can be written
as . In the first approach we assume that
the interfering symbols as Gaussian i.i.d. random variables
with known variance . Given snapshot, i.e., , we
are now ready to define the complete data set. The complete
data set is chosen as , where is the group of
the interfering users’ information bits transmitted at all time
instants and is the channel matrix and is composed of
the received vector from time instant to time instant .
Without loss of generality, we will detect user 1 first. The
pdf of the complete data set is given by

(6)
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vector is composed of user 1 transmitted data at all time
instants, , and are given by

(7)

where is constant not depending on parameters to be
estimated, is the Hermitian transpose and

(8)

where is another constant. In the above equation we
have assumed without loss of generality that the prior mean
for the interfering users’ symbols is zero and the variance

of the symbols is known.
Having the above equations we are now ready to evalu-

ate the E-step of the algorithm. Since we are conditioning
on the received data, we take expectations with respect to

(interfering users’ symbols).

(9)

where is the iteration index and is the expectation
operator.

Evaluating the expectations and dropping the terms that
do not depend on the parameters the above equation can be
written as

(10)

are the symbols transmitted by interfering users (with
transmit antennas each) at time instant , is the received
signal at instant , is the transmitted data vector of user 1
at instant , is the channel matrix for user 1 and is the
channel matrix for the interfering users. . The
symbols are obtained by maximizing Eq.10 over BPSK.
It is clear from Eq.10 that we need

(11)

in addition to we also need second order moment of ,
which can be easily evaluated once the conditional means
are available.

Now the problem is to derive the expressions for ,
i.e., the conditional mean of the interfering users bit. is
given by

(12)

where and are the data vector composed of transmitted
symbols at all time instants of user 1 and the rest of the

users respectively. In deriving the above equation, we used
the fact that . From now we will omit the EM
iteration index, i.e., . Using Bayes formula we can write
the conditional pdf of as a function of known pdfs is
follows, after neglecting irrelavant terms (using the fact that
transmitted symbols at instant results in received vector at
the same instant),

(13)

where is the vector of symbols of all the users at instant
, is the received vector at instant , are the interfer-

ing users data vector transmitted at instant , and is the
channel matrix. is independent of , hence neglected.
Substituting the corresponding expressions and rearranging
gives

(14)

Since the conditional pdf of will be Gaussian, it is easy
to show that

(15)

where

(16)

where is identity matrix.
The algorithm detects user-wise symbols. First, user 1

symbols are estimated from the above procedure. Then the
contribution of that user is subtracted from the received sig-
nal to get more clean signal. Then the user second is de-
tected. The same procedure is repeated for the other users.
After convergence of the EM algorithm (for detecting the
symbols of user 1), the solution of from Eq.10 is pro-
jected on finite alphabet to get the symbols estimate. The
same process is done for the other users too. The overall
algorithm works as follows:
1) First we initialize ,
2) We evaluate from Eq.15
3) These values are plugged into Eq.10 to get symbol up-
date. These steps are repeated until convergence.

5. USER-WISE SYMBOL ESTIMATION USING
DISCRETE MAI PRIOR

The EM algorithm for discrete MAI prior is

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2005 | No.1(5)

5



The steps for deriving the algorithm are essentially the
same except that the conditional mean of will be differ-
ent than previously discussed, i.e., Gaussian random vari-
able for the priors, which will result in different symbols
estimates. The conditional mean for is given by

(17)
From now for the sake of simplicity we will omit the EM
iteration index, i.e., k. In order to calculate the conditional
mean we have to evaluate the above expression, which is
summation of all interfering users’ symbols at instant mul-
tiplied by their corresponding pdfs, which is computation-
ally very expensive. Mean Field (MF) methods [1,7], pro-
vide tractable approximations for the computation of high
dimensional sums and integrals in the probabilistic mod-
els. By neglecting certain dependencies between the ran-
dom variables, a closed set of equations for the expected val-
ues of these variables are derived which often can be solved
in a time that grows polynomially in the number of variables
[1, chapter.2]. The MF approximation is obtained by taking
the approximating family of probability distribution by all
product distribution, i.e.,

We now choose a distribution which is close to the true dis-
tribution, i.e., . The parameter of the distri-
bution is chosen so as to minimize Kullback-Leibler (KL)
distance, i.e.,

(18)
where

and . can also be expressed
as (after neglecting constant terms)

(19)
where Z is independent of , has the Gaussian
distribution and the is the vector of symbols of all users
at instant , i.e., . After some simplification

can be written as

(20)

The above equation has the form

(21)

where is a term independent of , ,
and can be defined in a similar fashion and .
The KL distance between and can
be written as

(22)

where
(23)

is the entropy and

(24)

is the variational energy. The most general form of proba-
bility distribution for our problem (BPSK case) is

(25)

where is the variational parameter which corresponds to
the mean, i.e., . The entropy can be written as

(26)
and similarly the variational energy can be written as

(27)

In order to evaluate we have to minimize the variational
free energy, i.e.,

(28)

Differentiating this equation with respect to gives non-
linear fixed point equations, i.e.,

(29)
In the matrix form we can write the above equation as

(30)

where . The above Mean Field theory (MFT)
is called Naive MFT (NMFT) as it does not take correla-
tions into account while approximating posteriori distribu-
tion. Below we describe a method to some how take corre-
lations into account.
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5.1. Linear response theory

In approximating the posteriori probability ,
the correlations were neglected, when is chosen to
factorize, i.e.,

(31)
where stands for expectation with respect to distri-
bution . A correction to the estimate is found by differen-
tiating the following equation

(32)

with respect to to obtain linear response relation [1,12],
i.e.,

(33)

The above relation is exact when expectation is taken ac-
cording to exact probability distribution. However, if

is reasonably well approximated with the mean field
method, we can get the right hand side of the above equa-
tion by differentiating the left side of the equation with re-
spect to . In this way, we can improve the covariance
and hence the second moment of the interfering users’ bits
which will result in improved symbol detection as compared
to Naive Mean Field Theory (NMFT). NMFT does not take
into account correlations between random variables. This
improvement is gained at the expense of very little addi-
tional complexity. In [13] there is nice explaination about
working of linear reponse theory. The huge computational
task (complexity grows exponentially with the number of
interfering users multiplied by the transmitted symbols per
user) of exact averages over has been re-
placed by solving the above set of nonlinear equa-
tions [see Eq. 30], which can be done in time that grows
only polynomially. As the above equation is nonlinear there
may be local minima or saddle points. In order to avoid it,
the solution must be compared by their value of variational
free energy .

6. SIMULATIONS AND CONCLUSIONS

In this paper, we derived two receivers for user-wise sym-
bols estimate. In the first approach, the Gaussian prior on
the interfering users’ symbols is assumed and the EM al-
gorithm is used for user-wise symbols estimation. In the
second proposed receiver a discrete prior is assumed on the
interfering users’ bits. In the later case, the complexity of
computing the posteriori probabilities grows exponentially
in the number of interfering users multiplied by the symbols
per user. We derived low complexity method to circumvent

this problem. The exact posteriori probabilities are replaced
by the approximate separable distributions. The distribu-
tions are calculated by MFT (variational approach). Sim-
ulation results are shown in figure.1 for discrete prior case
on MAI. The simulations were performed by considering
two transmit and four receive antennas. The number of the
users were two in the system. The solid line represents ML
by enumeration, the star-solid line is ML using naive mean
field approximation and the dashed line represents ML us-
ing linear response theory. It is clear from the figure that
we get very close performance in the terms of the BER to
the exact ML (ML by enumeration) approach. The linear
response theory performs better than NMFT approach.
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Fig. 1. Av. BER of K=2 N=2, M=4 vs . Solid
line is ML by enumeration, Star-solid line is ML using naive
mean field theory, and dashed line is ML using linear re-
sponse theory
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