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The Optimal Error-Correcting-Codes and Cryptosystem with Coding Matrices over
the Finite Fields

Richard Megrelishvili
Department of Structural Research of Intellectual Systems of the Iv. Javakhishvili Tbilisi State University

The structures of the generalized Vandermonde Determinants over Galois Fields GF(q) are
researched. the obtained results enable tosynthesize the optimal (by condition (1,2)) classes linear
error-correcting (n,k,d)-codes over GF(2m)(n=m+d, k=m+1, d=3;5) and their effective linear (n,k)-
codes over GF(2) with the single and double burst-error-correction.
The synthesis of n-dimensional non-singular matrices and their inverse matrices for any n>0 is
realized and new matrix hybrid (public-private) cryptosystem is developed.

1. Generalized Vandermonde Determinants and the Optimal Error-Correcting-Codes

From the Theory of the correcting linear (n,k,d) - codes it is well known that

1−≥− dkn , (1.1)

where n is the length of the code words, k is informational symbols number and d is a minimal
distance between the code words.

If
   1−=− dkn , (1.2)

then the codes are called the optimal codes [1].
It is known how important are the properties of Vandermonde Determinants for the research

and formation of the code structures. However the generalized Vandermonde Determinants, which
are so well researched over the fields of real numbers, yet represent problems over finite Galois
Fields.

In the given work the structures of the quadratic matrices over GF(pm)  are researched. It is
demonstrated that generalized Vandermonde Determinants for these matrices differ from 0, that
allows to obtain codes over GF(pm) satisfying the condition (1.2) and also to realize the synthesis of
effective classes linear codes over GF(2).
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where m is any integer for which p(x) is irreducible polynomial over GF(2), ( )mGF 2∈α  is the
element of cyclic multiplicative subgroup of the GF(2m).

Let’s consider the quadratic matrices with the elements in the arbitrary i-th row and j-th
column of the system A:
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where 321 iii ≠≠ , { }mjjj ,,1,0321 �∈≠≠ .

Suppose D2 and D3 determinants correspond to the matrices A2 and A3 (1.4). Then the
following theorem is correct:
Theorem 1.1. Let GF(2m) be the Galois Field of polynomials over GF(2) modulo

( ) �
=

=
m

xxp
0ν

ν ,

and let ( )mGF 2∈α , ( ) 0=αp . Then

                   02 ≠D ,  03 ≠D ,  (1.5)

where ( )mGF 2∈α  is element of cyclic multiplicative subgroup of GF(2m).
The determinant D3 (1.5) is generalized Vandermonde Determinant of order three over the

field GF(2m) and D3 always differs from 0 if p(x) is irreducible over GF(2).
It is not difficult to show, as well, that the determinant of matrix
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{ }),,1,0;( 321 mjjji �∈≠≠ differs form 0:

04 ≠D . (1.7)
The obtained results enable to synthesize the optimal (by condition (1.2.)) classes linear

(n,k,d) - codes over GF(2m) modulo

( ) �
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ν

(n=m+d, k=m+1, d=3;5) and their linear (n,k) - codes over GF(2) with the single and double burst-
error-correction (where correspondingly ,2)1( lmmlmn ++= )1( += mlmk ; ,4)1( lmmlmn ++=

)1( += mlmk , 1)1( +−= mlb  is the bursts’  length, 1≥l  is integer).
Particularly from (1.5) and (1.6) follows that the basis matrix
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G (1.8)

generates the optimal (n=9, k=5, d=5) - code over GF(24) with the double-error-correction, where,
4321)( xxxxxp ++++= , and one of the corresponding (n,k) - code over GF(2) has the following

parameters: n=72, k=40, 2=l , which corrects double bursts with length b=5.
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2. A New Hybrid Cryptosystem with Coding Matrices Defined

Over the Finite Field

The cryptographic methods based on the matrix structures create systems different from those
obtained by Vigenere algorithm and its modifications. These systems are insufficiently researched
[2].

Usually the information word for encryption of message represents the vector  nVa∈  of linear

vector space defined over Galois Finite Field )(qGF  or element ( )xa  of linear algebra An of

polynomials modulo a polynomial ( )xf  of degree n over )(qGF .
The ciphertext is formed from multiplying vector a on special n-dimensional matrices A. The

decryption is realized by multiplying vector b on A-1 inverse matrices so that:
abA;baA == −1 . (2.1)

In this case the main cryptographic problem represents the question of forming of the key sets
or problem of forming the matrices which are algorithmically constructive in real time as well as the
encryption-decryption speed, etc.

The main purpose of the following research is the synthesis of the constructions of non-
singular n-dimensional matrices on a finite field and their inverse matrices and to prove that the
method being researched makes the constructive presentation of an algorithm easier.

The Common Methods of Construction of the Cryptographic Matrix Keys

There are known the methods of forming of matrix A  and its inverse 1−A  matrx[3]. For
example it is possible to construct the inverse of n

ijaA 1)(=  as follows:
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where ijA   is the algebraic adjunct of ija  element of A  matrix.

Despite that the operations in  GF(2) field are comparatively simple, the method which

realizes (2.2) can’t be accepted for some users because that matrices A and 1−A  are not represented
obviously due to the complicated calculations.

The expected result is not obtained even after the multiplication of the matrices (2.3):
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where  E,,E k1 … are the elementary matrices, which are used to bring  matrix A  to kk×  unit

matrix I.
In order to calculate the elements   x,,x n1 …  of the i -th column of 1−A matrix according to the

equation  IAA-1 =  the solution of the following equation system can be also used:
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where  n,1,k …=  and similarly to the above 0A ≠ .
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It is known that in algebra An of polynomials over GF(q)  field modulo f(x)  certain set of

basic ( )nk× -dimensional H  and ( )( )nkn ×− -dimensional G matrices can be defined satisfying
following condition:

0 GH T = ,                                                                 (2.5)
where TH is the transposed H matrix.

The space of rows of G and H  matrices generate ideals. For such matrices corresponding
generator polynomials   g(x)  and  h(x)  ( ( ) ( ) ( )xfxhxg = ) are defined, which form G  and H
matrices.

Similarly of the above-mentioned n -dimensional quadrate matrices (and their inverse
matrices) can be written in the following way:
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where the rows of matrix (2.6) contain the components of any nVa∈  vector.

Obtaining an ideal cryptographic system is impossible (generally speaking). In reality the
gain in cryptographic strength will result in loosing of speed or spoiling other characterizing values,
or other. But simultaneously the difference in cryptographic characteristics is approved because of
the dissimilarity of conditions of practical use.

The advantage of matrix methods over the Vigenere method is that the only one breaking of
the cipher text does not cause the breaking of the key. This is achieved on the base of speed
reduction, which is compensated by higher quality of cryptography strength of system. The
constructed method of the synthesis of the direct and inverse matrices is discussed in the following

part (it should be mentioned that the set of keys for fixed n is of about ( )2!n -th degree).

The Synthesis of Cryptographic Matrixes Based upon theAlgebraic Structures of
Coding

The process of constructing discussed matrixes (2.6) can become more purposeful [4,5]. The
equivalence of matrix elements was denoted as ( ) nn Vaaaa ∈= ,...,, 21  and

( ) �
=

∈=
n

i
n

i
i Axaxa
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.

It’s known that in algebra An ( )xfmod   for any ideal I  there exists unique monic

polynomial ( )xg  of minimum degree such that, the residue class ( ){ }xg  belongs to ideal I and, vice

versa, each monic polynomial ( )xg , which divides ( )xf  generates the ideal I , in which  is the
monic polynomial with minimum degree in I . Then by shifting the components of

( )110 ,,, −= nvvvv �  cyclically by i  unit is obtained the vector Iv i ∈)(  i.e. the polynomial
( )( ) ( ) ( )1mod −= nii xxxgxg  is obtained also by multiplication in the An ( )1mod −nx .

Suppose that ( ) ( ) 1−= nxxhxg  and, ( )xg  and ( )xh  generate I  and I ′  ideals and
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Than for any polynomials ( )( )ixg  and ( )( )ixh  the following equation is correct:

( )( ) ( )( ) ( )1mod0 −≡ nii xxhxg , (2.8)

where { }n,...,j,i 1∈ . Considering that for any element Ig∈ the multiplications of vectors and
polynomials on the field GF(2) don’ t coincide,

0* =TgH , (2.9)

where the matrix *H  is produced by vector *h , which consists from the components of vector h ,
written in reverse order.

Lets discuss quadratic matrices of n -th order corresponding to (2.6) matrix, which are
produced by ( )xg  and ( )xh  polynomials:
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where j -th column of matrix 2A  represents the vector )j(h′  in algebra of polynomials modulo xn-

1, i-th components of which are the components of vector ( ) 1−+ jr* xxh , if ji ≤ and 0' =ih  if i>j.

The following theorem is correct:
Theorem 1. Suppose ( )xg  and ( )xh  polynomials in algebra An modulo xn -1 over the field GF(2).

Degrees of ( )xg  and ( )xh  are, correspondingly, r and k; ( ) ( ) 1−= nxxhxg . Let   matrices A1 and A2

be generated by ( )xg  and ( )xh  polynomials , then A1 and A2 are mutually inverse:

IAA =21 , IAA =12 ,
where I  is the identity matrix.

Note, that methods of constructing ( )xg  and ( )xh  polynomials in an algebra An are known,
and they enable constructive fulfillment of result derived from the theorem 1 [4].
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Particularly if ( ) 31 xxxg ++= , ( ) 421 xxxxh +++=  are polynomials in the algebra A7

modulo 17 −x over GF(2), ( ) ( ) 17 −= xxhxg , then ( )xg  and ( )xh  generate the initial matrices A1

and A2 correspondingly (2.10):
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The Realization of the Process of Encryption and Decryption

The transmitter X and receiver Y  using open or secret channels choose matrix keys A1 and
A2 . The equation (2.10) settles the initial states of matrixes (for known polynomials g(x) and h(x)).
The processes of key choosing represents the permutation of columns and rows of matrixes A1 and
A2 known only to X and Y. permutation using open key K is performed by Diffie-Hellman
Algorithm [6] or other algorithms. Binary number of n0 dimension (n0 sequence) key K is divided
into blocks of minimal m length m1,..., mn, where nm ≥−12 , n is the dimension of matrices A1 and
A2. For any i-th row in the matrix A1 it is possible to choose )n,...,i(k )i( 1=   position using the

decimal number of any mi block (here and afterwards permutation of columns is implied for the
matrix A2 and vice versa).

Using the binary number of the first m1(i=1) block, position of the first row
1)(mod

11
+= nmk  is determined. If 1)(mod

12
−≠ knm , then 1)(mod

22
+= nmk  determines the

position of second row, and if 122 −= k)n(modm , then the position of the second row is

determined by value 1mod)1(
22

++= nmk , etc. For any 1>i  row

1++= nmod)jm(k ii ( { }1,,1,0 −∈ nj � ) is determined so that the following condition is fulfilled:

{ }
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kkk � , (2.11)

ni ,,1�= ; 
n
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.

For defense from plaintext attacks addition )(XOR  of the given initial )i(M –th informational

block with n  dimensional  )i(K  block of K  key is performed step by step before the encryption:
)()()( iii KMM +=′ . (2.12)

The process of encryption-decryption is realized by the following view:
)()()()(

2
)()(

1
)()()( iiiiiiiii MKMMACCAMMM =+�=�=�� ′′′′ , (2.13)

where )i(K  is the secret and is known only to X and Y.
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One-way Hash Function and Digital Signature

Digital signature is based on existence of sequence of natural numbers ki (i=1,...,n), known to
transmitter X and receiver Y. The synthesis is stipulated by the secret key K. The common block
length of the binary sequence corresponding to the ki numbers is 2

1
' +=

n
Cn .

The hash function h=H(M) is the execution of the following process. The n`-dimensional
information ( )

'1
,

n
MMM �=  is divided into n binary blocks ( ) ( )

i

i
k

k MMM �,1= . Each
)( ikM block represent to the vectors over the field GF(2) with dimensions corresponding to above

mentioned (2.11) integer numbers. If the Heming weight )( )( ikMw of )( ikM  vector is odd, then
( )( )ik

i MHh = =1, if even – 0=ih . Totally n-dimensional vector ( )nhhh ,,1 �=  is obtained for the

n`-dimensional information.
Thus hash function h=H(M) is defined in the following way. ( ) ''1, nn VMMM ∈= �  is the

informational vector and ( ) nn Vhhh ∈= ,,1 �  is vector obtained through hashing:
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where the operation of addition is defined over the field GF(2).
X transfers to Y the following concatenation:

|M||h|,
where h is the signature.

The receiver Y verifies the correctness of the signature using the secret key K and the
discussed open algorythm.

The discussed methodology is different from the known one [7]. This is the case when Y uses
secret parameters along with the open algorythm for verification of the signature.

It should be also mentoined that secret values are the constituent parameters of the
cryptographic system.
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