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One of the most principle objects in development of nonlinear mechanics and many
branches of modern mathematics is a system of nonlinear differential equations for elastic
isotropic plate constructed by von Karman in 1910. This system with corresponding boundary
conditions represents the most essential part of the main manuals in elasticity theory and
building mechanics (between them those of Kirchhof, Filon, Love, Fliugge, Timoshenko,
Donnell, Landau and Lifchitz, Novozhilov, ...). In spite of thisin 1978 Truesdell expressed an
idea about unfounded of “ Physical Soundness” of von Karman system. This circumstance
generated the problem of justification of von Karman system. In the following period this
problem was discussed by many authors, but with most attention and in details it was studied
by Ciarlet ([1], ch. V). The main result obtained here is given as follows. “ The von Karman
equations may be given a full justification by means of the leading term of a formal
asymptotic expansions of the exact 3D equations of nonlinear elasticity associated with a
specific class of boudary conditions’ [1,p.368]. This result obviously is not sufficient for
justification of “ Physical Soundness’ of von Karman system, as the basic terms of these
expansions ar e coefficients of power series but not the terms having “ Physical Soundness” .

On the basis of work [2-3] below there is given the direct method of constructing such
anisotropic inhomogeneous 2D models of von Karman-Mindlin-Reissner(KMR) type, by
means of which corresponding terms take quite determined “ Physical Soundness’. These
terms are: the averaged components of the displacement vector, bending and twisting
moments, shearing forces, normal rotations, surface efforts. Further it is shown, that these
new models depend from the arbitrary parameters, by choosing of which in the isotropic
homogeneous case from KMR systems the von Karman system as one of possible models
having continuum cardinality is obtained. This method gives full system of differential
equations and we underline that constructing by classical method one of the equations of von
Karman system is not independent and represents a compatibility condition of Saint-Venant-
Beltrami type (for nonlinear case) between deformation components (see also the recent work
of Podio-Guidugli [4]). This remark is essential in discussing the dynamical problems. In this
case along the quantities describing the vertical directions and surface wave processes in the

class of constructed models it is necessary to take into account the quantity Ad, P (P

denotes Airy function), corresponding to wave processes in the horizontal direction. It also
should be mentioned, that from KMR type system in the linear case when elastic plates are
isotropic or generalized transversal isotropic a uniform representation for all boundary-value
problems (considered for example in [5-6]) in terms of planar expansion and rotation is
obtained. Corresponding systems of inhomogeneous equations have Cauchy-Riemann type
operator asa principal part.

The work is devoted to the matter of constructing the KMR type two-dimensional
mathematical model with respect to spatial variables for binary mixture in case of elastic
plate. In the first part on the basis of works [7-8] there will be introduced nonlinear dynamic
three-dimensional (with respect to spatial variables) mathematical model in an elastic case.
For simplicity and clearness in the work there is considered the case of isotropic mixture, but
analogous models can be easily constructed for anisotropic elastic plate with variable
thickness, using the methods developed in [3]. We should emphasize that we essentially rely
on the works [2,3,9], using discussions and formulas from the monograph [2] without
guotations.
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I. The principle system of 3D equationswith respect to spatial variables

We denote the domain in three-dimensional Euclidean space R® by Q-. In the Cartesian
coordinates we denote the point by x = (x;,x,,%3) OF (x,y,2) . Time changes in the following interval
t0(0,T), Qr =Qx(0,T).

Equations of dynamic equilibrium of binary mixture have the following form

aj(a,, +o,, 0 u,, )= po’u, +£,, (xH0Q;. (1.2)
Here oy =(0j.0f)". u =(u,u)", f;=(f/ )" -are column-matrices constructed by components of
stress tensors, displacement and volume forces vectors, respectively. # is adensity matrix.

P P3

o= Py >|ps|20,
(,03 sz e

o1, p, — are partial densities of components of mixture, 0 symbol denotes the following operation

(a,3,)" O(by,by)T =(ajby, ayb,)T.
Theinitial and boundary conditions have the following form, respectively

u(x,0) =uy(x), 0,u(x,0)=Uy(x), x0OQ, (1.2
1[0,,0,,05][u]l =g, (x,t)d0Qx(0,T), (1.3)
where u=(u,u")" -is a matrix of displacement vector, I-is a linear 6x6 matrix-operator,

components of which include operation of derivation of at most first order.
The relations between components of strain tensor and displacement vector have the following
form

1
&ij ZE(Ui,j U U U Uk,j), (x,)0Qr . (1.4

&; is acolumn-matrix & = (&,
material in each point of body there is considered two tensors of stress and strain and two vectors of
displacement.

Hooke' s generalized law is written as follows

gy = (K+ A&y )3, +2Me; + 245, (x,)0Q7, (15)
where J, —isKronecker symbol.
k=(-0,,0,)" = (A=A A= A)7, A=1iL, = (hyhy)T,

a a a a
2/027/‘22:A2+ 21 Ao = A = A3 - 2/01:/]4+ 2p2ap+:,01+,021

+ + + P+

M :(,Ul ,Usj’
Hs H;
A s, Mo, 1z —NUMbErs are elastic components which characterize the mechanic properties of
mixture, hij — are components of so called partial rotation of components of mixture.

Ei'j')T. Thus, in the theory of mixture for two isotropic elastic

Ap=A -

_ 1( ] ] n n )
hy =Wy~ U~y

and for matrix »; we have the following expression
1 1 -1
hij :ES(U“ _Ui,j) y S:[—l :IJ.

Taking into account the latter formula and (1.4), the relation (1.5) can be rewritten in the
following form

1 '
o =(kK+Aug ) +(M = As9)y; j +(M + AsS)uy +EAAmm5ij +MA;, (L5)

where exist the denotation
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Aj = Duy g
In all the formulas introduced above, Latin deaf indices mean summarization from one to three.

I1. Von Karman-Mindlin-Reissner type two-dimensional equations with respect to

gpatial variables
Let us consider the case, when Q represents the plate of constant thickness 2h. We denote this
domain as follows. Q, =D(x,x,)x]-hh[, where D(x,x,)-is a fla bound domain,

S=D X{i h} —are surfaces of plate, s=0Dx[-h,h]-is a lateral surface. In connection with
domain's Q, structure, the condition on surfaces S* issigned out. Thus:
g+ 0u =98, (xt)0S* x(0,T). (2.9
Our objective is to obtain systems corresponding to bending and extension (compression)
processes.

[1.1. Let us begin with constructing the system corresponding to equations of bending. We
introduce the following means of Reissner (we note too, that for purpose of strictness and brevity of
writing, in this work numbers of formulas and methods of proving totally coincide with those in

[2]):

h

M a = JZ(Uaa + Ukn U ua,k)dzv (21)
h
h
M5 = IZ(JH,E + 0y O Uy )dz, (2.2
Zh
h
Q= I(Uij +o 0 )dz, (2.3)
“h
3 "
u, :F:[]zuadz, (2.4)
.
Uy :m:l;(hz - Z%)uydz, (2.5)
h
wij :Ej(hz _Zz)aide, (2'6)
h

where all the quantities represent column matricesof type a=(a',a")" .
From (1.5') invirtue of (2.1), (2.5), (2.6) we obtain

Uy = =(M = 159) (M + AsS)u, +2—§3(M ~ 169) Wgs ~ (M = 4S) *MBg, 2.7)
where
3 h
— 2 _ 2
B.s _Wi(h Z°) A,dz
From formula (1.5) we have the following relations
Uﬂﬂ = k + (/\ + 2M )Ezm + /\(83—57 3-a + 633)’
£ =(N+2M) (04 —NE 4, = K).
From the latter two formulas we obtain
Oy =(N*42M)Ey + N* £y 5y + AN +2M) Fag + (1 = A(A +2M) D)k, (2.b)
where
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A*=N-=AN+2M)7A, 1={1,1}.
From this according to formula (2.1) and taking into account (2.7) we obtain

3
M, =-2N [(/\*+2|v|)a2 FA*OZ,[(M =19 (M + A S)u; +
+(/\*+2M)(M ~25S) Waze N M =AWy s +
h
(2.8)

+ AN+ 2M)‘1I2033dz+ MM
-h

where
h
MM = [z0,, Ou, dz+—{(/\*+2M)[Aa (M - A,9)*MB, , | +A*[A; , -

-(M -A8)"MB,,, [}
A;ﬁ_4h3_|.ZAaﬁ A:m':A;'
In virtue of formulas (2.2) and (1.5') we have

h 3
Mn/? - JZ[(M —Ass)un,/? +(M +A58)uﬁ,a + MAﬂﬂ]dZ a [(M -/ S)u”ﬂ

+(M + A9, +2MA,|.
If weinsert (2.7) expression of u, - inthe latter formula, we obtain
3
AT MM =269 (M + 49U, + 10,0,

M, =
(2.9)

+(M +AsS)(M = A5S) W 550 + My,

where
h
M2 = [ 20, Dy, dz+ 2 [2|v|Aaﬁ MB, ; — (M +A,S)(M ~ A,S) M8, |

-h
From the first two equations of equilibri um system (1.1), in virtue of formulas (2.2) and (2.3), we

obtain

3 h
Qa'3 a',B,B + h(ga +0, ) th ; - IZfadZ
h -

If in this equality we insert expressions (2.8) and (2.9) of M, and M ;, respectively, we obtain

3
Qs =- £</\*+2M>(M —1.9) (M + A,S)AU;, +IAY,, +

FA*AM +AS)M = AS) M5 o + AA+2M)™ I 204,02+
-h
(2.10)

+h(g, +95) 20 patu —jzf dz+ Q%

where for nonlinear part we have the following expression
h 3
= [2,(0 D)0+ 2 s2m)m, A A, +

“h
+2MA, . .., —MAB, —(A*+M + A.S)(M —ASS)_lMBﬂM].
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In al the above mentioned formulas by Greek deaf indices summarization is done from one to
two. In addition, if in some term exist the same indices in different sides of equality, then
summarization does not take place.

Let us integrate the third equation of equilibrium system (1.1). If we take into account formulas
(2.3) and boundary conditions (2.a) on the surfaces of plate, we will have

h
Qo0 =20007Us + [ fadz-05 + 05, (2.0)
-h
where exist the following denotation

_ 1"
U :—Iujdz
2h .

h
For calculation of the entities I 205,02, ¥, W3, iNVOlved in (2.7)-(2.10) we use Simpson,
-h

trapezoid or Gauss formulas

fzagadz=§u +2r)(g3 - 93) * nlzogir], (211)
where ’
rl[zasa;l'] = ((I - I'),oSm +I o, )[z(o*33 +0;0uy; )]— thaja Ou,,dz,
Here pq,. o, —are the remainder term of corresponding quadratic formula, pg, = (05, P4n)"

Py = (pt'r !IOtr ) . T :(y' ;)"J , V', Yy —ae arbltrary parameters

0
Anaogously we obtain
h2 z
v, =§(I +2I)Q, +I’2|:ZJ.0'U dz;l‘] (2.12)
0
where
z 2 h
rz[z_[a dz; I'} I'),osm +Ip, )[z_[aijdz} —%(I + ZF)J.U.(,- Ou;,dz

0 -h

Now let us determine the relation between the entities ¢, and ., . Analogously to formula (2.7)
we obtain

U, = =(M +A.9) (M - A,S)u, +2_;°:3(|v| +A.5) My, — (M +A.5)"MB,,

From the latter and by above mentioned formulas we obtain the following relation
3
Wso = 2o MM+ 458) = M+ Aol +(1 = MOMB}+ Mg, (2.13)

where
M=(M +AS)(M -A.9)™
From the formulas (2.13), (2.11) and (2.c) we will have the following equality

2h® . —
Vs p :?M l{[M ‘M +A,S)-M +/155]AU3 +(1 + 2F),06t2u3 +

h

1 + - 3 I

Pt +2F)[J.f3dz—g3 +03 [+0malapi T+ (M= DMBg s 1 (2.14)
-h
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From this latter formula taking into account again formula (2.12) we obtain (we imply, that
r¢—%|)

Qpap =20(1 +2M) M H{[M'(M +A,S) - M + A ;S]au; +
h
+ (1 +2r) po7 us +2—1h(l +2F)><(I fydz-gs + 95]+
-h

r)+(m -1)vB

+2—f:36ﬁ(r2[r3ﬂ;l‘] -M ’rz[r mﬁ}, (2.15)

par
where we have the following denotations

z
= zjaijdz
0

Now again multiply the both sides of the third.equation of equilibrium system (1.1)
on%(h2 - z%) - and integrate it from-h-to h-. Taking into account formula (2.11), we will have

_ 2h3 2 x 1 " 2 2 h2 + N .
Wsp —?patu3 +§J(h -z )f3d2_?(| +20)(g; —gg)—r1[20'33,|_]
-h

h h z
- jzak3 Ou,,dz- jzdzj (0 Oug,) zdz
-h -h 0
From the latter taking into account formula (2.13) we obtain

2h® ) ] 1 -
Wpip =5 MMM +A:8) - M +ASJau; + @tu; -2 (1 +2r)(g; - ;)

+

h h h z
4i2 J'(hz -2%) f3dz—2—‘;’2(_|.zak3 Ou,,dz+ _[zdz_[(ak3 Oug,) zdz+ rl[za33;l']j
—h -h -h 0
+(M'=1)MB g 5}t (2.14)

If we insert formulas (2.12) and (2.13) into (2.8), for the bending moment we will have the
following expression

3
M, == 2 [ 4200 A% 02, M s + (A 2 )M - 2,9

2
x[%(l +20)Quss +6ar2[ras:r]}+/\*(lvl -29)"

2 2
{%u +2N)Qu 320 *0aalalTaaa r]} A+ 2m)
(2.89)
s v, 3
X{(I +20)(9; —9;) +Fr1[za33; I']} +M
where
M"=(M -A.S) (M +A.S).
If weinsert the same formulasinto (2.9), we obtain the expression for twisting moment

M, == M, + [ +20)Q,,, + M1 +20)Q,0, ]+
aB — 3 3,08 3 a3,B B3.a

+a/3r2[fa3ir]+Maarz[fﬁsir]JfMyE- (2.9a)
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Now let us obtain equations for the quantities Qus=(Qs.Q%)" and uj=(u;,uy )", which
represent vectors consisted of sharing forces and average bending, respectively.
Let us derive the both sides of formula (2.14) by x, - and insert it into right-hand side of (2.10),

in the same formula substitute ¢,, by expression (2.12). With respect to Q,; —we obtain the
following equation

h? 2h® . . . h? a4 + -
Q. —?(| +2MNAQ,, = 5 MAU; +?[/\(/\ +2M) ™ - I\/I](I +2M)(9; —95) o

+ — 2h3 e 2 2. h2_ n
+h(g, +ga)+T[M(I +2IN)00; Uza —patua]+?|v|(| +2F)_|' f,,dz—
-h

- jlzfadz+ﬁaf,ﬂr2[r3ﬁ; I']+/\(/\ +2M) 0,1 (20T |+ Ar,[1,4:T]
-h
+2_23M(M'— )MB g3,5 + Q05 , (2.16)
where we have the following denotations
M= (A*+2M)M" = (A* +M + A.S)(M - A.S) (M + A.S-M' (M - A.9)),
M = (A*+M + A.S)(M - A.S)*M' ™.
We can obtain the equation (2.16) also by using (2.14'). In this case we will have

h? 2n® .. R AN + -
Q. —?(| +2MNAQ,, = —?MAU&D, +?[/\(/\+2|v|) —I\/I](I +2)0,(9; —9;) +

+ oy, 2k 11 2 % 2, * 1" 2 2
#h(g] + ;) + M0, + o7 [+ M [(07 - 27)f
~h

h h z
—M[I 20,5 OUy,) ,dz+ jzdzj(am O ugyk)'ﬁdz] + [/\(/\ +2M)™ —M]aarl[zagg; r]
-h 0

-h

2h% — "
=M = M)MBys 5 - J.zfadz+QaN3L . (2.16)
-h
From the formula (2.10) we obtain

2h®

h
Qpap = =5 (N +2M)M DU, + (1 + MM)AY 5 +A(A+2M ) 2B0dz +

-h
2h® "
+h(g, + 9;3)’13__3 PO 5 = IZfﬂ,ﬁdZ+Q/§letﬁ-
-h

Let usinsert in the latter formula (2.14) and equalize the obtained equation to the right-hand
side of equdlity (2.15). We will obtain the following equation for the entity u;

3 —_— —
% D'A?U; +2h(1 +2M)*D"AU; = L(A,M', M, F)Y{(I +2r)p2us

1 " .. _), 3 _ ,
e +2r)(_jhf3dz—g3 +g3j+ﬁaﬂr2[rw,r]+(m ~1)MB, ,}
2h® ., . . h? _1[ .
_?atuﬂ,ﬁ +h(g[3 +gﬁ)!ﬁ+?/\(/\+2M) (I +2I')A(g3 _gs)

h
3 3 -
+FArl[za33;F]}— J.zfﬁﬁdz+h—2(l +2r) lrz[rm;F]+Q,3'\‘3L‘ﬁ. (2.17)
“h
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where we have the following denotations
D'=(A*+2M)M" = (M + M)(M'(M + A, S) - M +A.9),
D"=(M +A,S-M'*(M -A.9)),
3
L(AM', M r)_ﬂ(m 1L M)A-2h(1 +2r) M
when A, =0,thenM'=M"=1=D"=0and D'=A*+2M, M =A*+M .
For this case (2.17) will transform into biharmonic equation

2h® )
3 = (A*+2M)A%u; = F. (2.18)

[1.2. Let us construct the equations corresponding to extension-compression processes.  Let
us multiply the first two equations of (1.1) on 1/2h - and integrate it from-h-to h-, we will obtain

1 o= 1 I PSR
2 | 26000+ 0 D) =9l + 20 [ o= 0500,
from which on the basis of relations (1.5) and (2.a) we write

(/\* +2M )Eﬁm,a + N 23—0/ 3-a,a + 2M Eas—a,s—a + 2A57;la3—a',3—a’ = mfaa +

1" 1 o1 L h 1"
+— | f dz—-—(g' - -—ANA+2M) 0. dz+—|0,.(0,. Ou,, )dz
o | fo02 50000 = 02) ~ L AN+ 2M)™ [tz 45 [0, (0,5 D) o1
where

-1 - 17
£i :_Ieijdz, hij :_jhijdz.
2h? 2h -,

Let us rewrite the formula (2.19) in the following form
(/\* +2M )aagﬂﬁ + 2Ma3_a (203—0' - a;}aaa 23—0' 3—a) + 2/]503_0,%0/3—51 = Ea

where F, - denotes the right-hand side of expression (2.19).
If in the latter formula we calculate the expression in brackets and insert vaue of 743« We
will obtain

h
(N 42M00, 210+ (M = As802 (s =) = 2000+ [ o= (05 -0)-

—/\(/\+2M)jo—mdz+ ja (0 Ou,,)dz+M@,(u . Ou _)-

k,3-a k,3—n)

_aa—n(u k,a DU k,3—a))1 0':1, 2;
If we derive the both sides of the obtained equation by the coordinate x, and summarize it, we
obtain

h
(A*+2M )Afﬁﬁ = 07 Uaa +—- I faa'dz__(g; ~04) _%/\(A + 2M)IA033dZ+
“h

ja 2,(0y 0u,, )dz—M[u;,u;]- R[] (2.20)

where [u,v] isso caled Monje-Amper operator,
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[u,v] =o,utdo,v—-20,udo,v+0,vo,u
RIe1 =M us,us = [us, v |+ [ue s )
h

To caculate the integral J' 050z involved in the obtained relations approximately we use
-h

Euler-Maclaurin formula

h
(0 0a Dugaz=rlas + 0z]-" [ois - gzal+ o, ves (2.21)
-h
where we have the denotation
0:(2) =04 + 0 U Uy, ’
and v depends on the order of smoothness of function g;(2) .
If we consider the case of statics and there exists alimit
lim (3 =04(Tsa + Oka DUk, (2.22)

then
gai,s = fsi - g;,a
Therefore the considered integral will be calculated by the same precision, as above (2.11).
Let us consider the nonstationary case. In virtue of the third equation of equilibrium system and
formula (2.22) we write

h
95,3 =fy - g:;,a' + patz(U3+ -uz)=f5 - gi,a + Patz J.u3’3dz. (2.23)
h

where uz =ug(xy, X,,£h,t).
From Hooke law we have

U3v3 = (/\ + 2M )_1(033 - /\flgﬂ - k) _%ukﬁ D Uk’3. (2.24)
Integrating the latter equality we obtain

h h h

J‘uaygdz =(A+2m )_1“‘(0'33 + 0 DUy, — 0y DUy, — AL, —k)+ J'uk,3 O u, .0z
-h -h -h

If we denote o; + 0,5 Oug, =95(2) and insert (2.23) in formula (2.21), we obtain

h 2 2 h

Iga(z)dz = h[g; + g;]—h?[f; - fs_ (g;,a - g;,a )]_% J‘U3’3d2.

—h -h
Using (2.24) in thisformula gives:

foulabe=rlg: + 0] T 10 -t ~loz -0, | (v 2w ook 5

-h

+ h—::paf{(/\ +2M )‘131(/\5!m +0,, O Uy, )z +% Jh'uk3 O uk'adz}.
Let us rewrite the obtained eql;;\I ity in the following form_h
jlg3dz: A—%p(/\ +2M )_10t2]1g3dz, (2.25)
where ! !
2 2

A= h[ga+ + ge:]_h?[f; - f3|_< _(g/;,ﬁ - g;;,/;)]_h?patz(/\ +2M )_l/\zﬁﬁ + r(A),
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h? 0 1h
(=12 ] (v 2)* [, D2, D] ol
From (2.25) we obtain
jlgadz = (I +h*D, )_1A,
where K
D, = %p(/\ +2M )72

Let us return again to the bending equations and note the following: M, Q_, and In the
h

nonlinear part of the expressions of entities Q,, is isolated integral J.UM Ou, ,5dz, which
~h
equalsto

h h
IUM 0 ugyﬁddz = 2h[u§, FD]+u§’ll 0Py —ZU?E12 OP, +u§’22 OP,y, + J‘O'/;t; D(US,,BJ —ugw)dz
“h “h , (2.d)
where

. 1
Ogp = (_1)0/ ’8|:a3—0/63—,8F(X1’ Xz, x3,t) +E Pas (Xl’ Xzat)}

and we must take the function F,; in the following form

_h
sz,a - Paﬁ,s—a = 2hpat2 Ug+ I[fa _(0-/?5 U u3,k)',8}jz_ g; + gz_v
-h

and
1 h
FD=—IFdz
2nd

From the right-hand side of equation (2.17) due to expression (2.d) the mentioned equation will have
the following form

2h® |, 2 o Ay 401 [— /-1 —1]A .-
TDAu?,+2h(|+2r) D"Auy = {(I +2r)™*™M -5 MM -A(A+2M) (I+2I’)(g3—gg)

+ Zh{l —%h + (AT M =AM + Ag8) (1 + F)]A}[UE, F D]+ f, (217)

where for brevity f denotesall other terms in right-hand side of (2.17).

The system of differential equations corresponding to bending can be written in the classical
form, when as a unknown functions there are chosen average deflection of Reissner and rotation of
normals. For this we use the equilibrium equations:

oh3 "
Mg +Mppo —Qug =Tpat2U1 +J‘Zf1dz_h(gl+ +0;)
h
h
2h3 . .
M211+M2,2‘stszatZU2+J-Zf2dZ‘h(gz+92)
“h

h
Qa11 Qg = 2hpd?us + j fadz- (93 - 93)

-h (2.26)
Taking into account (2.13) from formulas (2.7) and (2.7") we obtain
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- jaks Ou, dz=2h(l + 2r)‘1[(|v| - AsS)u, +(M + AsS)uz, + MByg) (2.27)

h
Qu - J' Ore O Ugz=2h(1 +27) (M + 49U + (M - A;S)U5, + MBs) (2.28)
-h
Inserting (2.27) in formulas (2.8) and (2.9) correspondi ngly we obtain

3
Ma_%{(/\*ﬂl\/l)u A Uy gy 2—1h/\(/\+2M)‘1(I+2r)(g§—g;)+

h
+(A* +2M )(M _Ass)_l{;(l + ZF)I(Jka Hug ),g + MBaa,s} +
“h

h (2.29)
+A* (M _/‘58)_1|:;(| + 2r)_|.(0-k3 N u3—a',k ),3—0' + MBS—a’3,3—ai|} + Ma’?"-'
-h
M, =2 M+ M - La+oryo,ou,,) . d
ap _? ( + S)U,Ba +( S)U +E( + )Uk3 ua',k B zZ+
h
1 r
+SM( +2r)_J'h(ak3 OUgy) gdz+MByg s + M Msmﬂ}+ MM (2.30)

Inserting the formulas (2.27)-(2.30) in system (2.26) we obtain
(M = A.S)AU,, +(A* +M +/15$)aau;,ﬁ —h—ia +2r) (M - A9, + (M + A9}, | =

(g: + g;)_i/\(/\+2M)—1(| +2M)0, (02 - 03) -

. 31
= piu, +— | =,d
Mt a 2h3:‘; a 2h2

—®, =Py, (l H) Byt I% Ou,,dz, a=12 (231)

(M )IS)Au3+(M+)IS)uM—(|+2r){,05tU3+ jfdz— (95 —95) -

: 17
—(1 +2r)*MB, , +%I(% 0 uslk),ﬁdz},
-h

where @, and @, denotes nonlinear termsinvolved in quantities M, and M ;.

[1.3.Let us consider he problem if construction of KMR type systems for binary mixture of piezo-
elastic plates. For thisaim we used results of [2,section 9].

Let avector of electrical induction-D, atension of electrical field-E and an electrical potential ¢
have two-component representation as in | section .

The following result istrue:

If equations of states of type (2.36), (2.37) of monograph [10] or generalized Hooke's law
[2,p.117] is supposed to have a form of (1.5) then the scheme of section Il is applicable for
constructing and justifying (in Physical Soundness sense) linear systems of KMR type for binary
mixtures of piezoelectrics and electrically conductive transversally isotropic elastic plates.
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