
Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2005 | No.3(7)

A kind of packet classification algorithm based on compress, partition and index *

Tian Liqin1 Chen Fuming2 Lin Chuang3
1Computer Science and Technology of Department, University of Science and Technology Beijing 100083

Email: tianliqin@tsinghua.org.cn
2China University of Geosciences (Beijing) Beijing 100083

3Department of Computer Science and Technology, Tsinghua University, Beijing, 100084, China

Abstract:
In this paper a new fast scalable multi-dimension packet classification algorithm is
given. This algorithm converts rules, by compress operation, partition operation and
index operation, into two kinds of storage data structure: compress-partition-rule-table
and index-list-tables. Compress operation is like RFC algorithm [Tian Liqin, Lin
Chuang. Study and application of packet classification. Journal of computer research
and development, 2003,6: 765-6775], but in order to increase the speed of the packet
classification, the technique is used only in first step. Partition operation is like regional
partition algorithm [Yan Tian-xin, Wang Yong-gong, Shi Jiang-tao, Dai Xue-long.
Optimized implementation of regional partition algorithm for packet classification,
Journal of China institute of communications, 2004,6:80-88], but it partitions a
compressed-rule into several 16-bit fields and needn’t partition it into only 1 or 0
matched rules. Index operation, which creates index-list-tables and has 64k rows for
each partition field, can greatly speed up the classification. Moreover, These methods
can make the algorithm support ten thousands multi-dimension rules, and have low
expected storage complexity. It not only can be implemented by the software but also
can be implement by the hardware. Compared with existing classification algorithms,
the algorithm is better than those existing classification algorithms when ten thousands
multi-dimension rules is concluded in the rule base, so it can be used in the real router
when it deals with large packet classification rules.

Keywords: Packet Classification algorithm, design and Implementation, Compress,
Partition, Index

1 Introduction

Packet classification is widely used in router, firewall, intrusion detection system and so on.
Packet classification must be forwarded at wire rate, this means routers must forward minimum
packet (little than 64 bytes) immediately and this is very important in various network application.
The hypostasis of packet classification is its fast speed, but we also need consider other aspects of
the packet classification such as the number of the rules and the storage needed. It is difficult to
develop a fast and multi-dimensions packet classification algorithm, which can deal with a large
number of the rules. Packet classification has already been a new bottleneck of router. It isn’t
suitable to only simply use these existing common fast search algorithms. We must find out new
skill to deal with great rules and storage space needed in the packet classification. We should
research relationship between the classification speed and characteristic of classification rules to
* This work is supported by the National Natural Science Foundation of China (No. 90412012,60429202, 60432030 and 90104002),
NSFC and RGC (No. 60218003), the National Grand Fundamental Research 973 Program of China (No. 2003CB314804), and Intel
IXA University Research Plan.

22

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2005 | No.3(7)

find efficient packet classification methods.

2 Compress Partition and Index Algorithm

2.1 The main idea of algorithm
The best characteristic in this algorithm is we convert the original rule set into two storage

data structure: one is compress partition rules table and the other is index lists tables, which can
decrease the requirement of storage space, improve the speed of classification, and also can support
ten thousands of rules. The detail step of the algorithm is as follows:

1) Delete redundant rules and sort rules ascendingly by full matched rules
 Research shows that 8% rules are redundant in classifier, if packet classification algorithm can
identify and delete these redundant rules, it can improve the capability of packet classification. The
detailed algorithm sees [1]. Then sort rules ascendingly by full matched rules, in other words, the
aim of the sort is finding the most matched rule firstly when the rules is found in order, the detailed
algorithm also sees [1].

2) Create compress-partition-rule-table
This algorithm don’t store original rule set, but store compress-partition-rule-table which is

created from the original rule set, the aim is decreasing storage space, speeding up packet
classification.

It must deal with compress operation and partition operation when create compress partition
rules table from original rule set. The idea of compress operation is like RFC algorithm’s first step
[1], the aim of compress operation is to compress width of classification region, but we don’t use
heuristic algorithm. We only use stationary compress algorithm, which can simple the classification
operation, by analysizing characteristic of fields and distributing regulation of the rules. It can
decrease storage space and speed up classification. The idea of partition operation like regional
partition algorithm [11], but there are some different between them, one is our algorithm need
partition the compressed rules into several fields with 16 bits width, the other is our algorithm don’t
need partition the compressed rules into only 1 or 0 matched rules but into several field matched
rules as long as it can be read out from memory at a time. From the example in the following
section we can see that the suitable rule’s number is less than 7 not 1. The detailed algorithm also
sees the example in the following section.
3) Create index-list-tables: We create P index-list-tables with P partition fields of compress-

partition-rule-table. Then we can only lookup index-list-table with the value of partition field to
find partition field-matched rules, this can speed up packet classification. Partition field has 16
bits, so index-list-table has 64k(65536) rows (216=64k), so index-list-table also can be named as
64k table. The reason of partition field has 16 bits is if we partition it into 8 bits (28=256), then
the lookup efficiency is too low, if we partition it into 24 bits (224=8M), then the requirement of
storage space is too large, moreover, when partition it into other bits that don’t suit the
hardware characteristic of computer to read and write. Index-list-tables’ structure is: the first
column is the matched rules number of partition field, others are pointer, which point to the
position of the rules in the compress-partition-rule-table, and meanwhile they are stored by the
order of rules. This can greatly speed up the lookup the partition field matched rules. Detail
process can be seen from the figure 1 and author also gives the whole mapping graph at the
same time in figure 2.

23

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2005 | No.3(7)

3 R0,R9,R10
0
0
2 R1276,R34565
1 R787

… …
0

0x0000
0x0001
0x0002
0x0003
0x0004

…
0xffff

Num ber o f
matched rules

Order number of
m at ched rules

Index
value

64k-t able

Figure 1. Structure sketch map of index-list-table for a partition field

*In this figure, R0 is rule0, R9 is rule9, R10 is rule 10, these are all the order-number of
partition field matched rules in compress-partition-rule-table.

Source IP
address

Source IP
address Object IP

address

Object IP
address Source

port

Source
port Object port

Object port
…

…

Partition field 1
Partition field 1

Partition field 2
Partition field 2

Partition field 3
Partition field 3

Partition field 4
Partition field 4

Index-list-
table 2

Index-list-
table 2Index-list-

table 1

Index-list-
table 1 Index-list-

table 3

Index-list-
table 3 Index-list-

table 4

Index-list-
table 4 …

…

Original rule set
（classif ication fields）

Compress-partition
-rule-table

Index-list-tables

…
…

Compress
Partition

Figure 2. Whole mapping graph of this algorithm

4) Lookup process: lookup process is very simple. First, we take out all classification fields from
packet when accept a packet, and compress and partition the classification fields into P 16bit-
partition-fields, then lookup P index-list-tables with the value of P partition fields and read
out P lists. Get the value of first column (it contains matched rules number of partition field) of
each list, if 0, it means no matched rules, if not 0, then we compare values of first column of P
lists, select the list which has smallest value to lookup compress-partition-rule-table with the
values of other columns of the list, then we can get the matched rule of the accepted packet,
because these values of other columns is sorted by the order number of rules in compress-
partition-rule-tables. The detailed algorithm sees the example in following section.

2.2 Example of the algorithm
There are two kinds of assembled classification fields usually: (1)Source, object IP address

(each 32 bits), it is usually for two dimension classification (totally 64 bits). (2)Source, object IP
address(each 32 bits), source, object port(each 16 bits), protocol type number(8 bits), it is for five
dimension classification (totally 104 bits). The following example algorithm is designed for(2),

24

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2005 | No.3(7)

the(1) and others packet classification can also be designed in similar way. The first step of the
following example algorithm refers to section 2.1, it also depicted in detail in other papers, such as
[1][2][10], so we don’t depict it in this example.
2.2.1 Create compress-partition-rule-table from the original rule set by compress and

partition
There are two steps in the creating compress-partition-rule-table. Compress operations’ aim is

to decrease the whole field width of classification and speed up packet classification, and partition
operations’ aim is to decrease the storage space when we create compress-partition-rule-table from
the original rule set.

1. Compress operations
compress operations is like the first step of RFC algorithm, but we don’t use heuristic algorithm.

We use stationary compress algorithm by analysizing characteristic of fields and distributing
regulation of the rules. It can decrease storage space and speed up classification. From [1] we know
the protocol type only need 3 bits not 8 bits. Source port and object port each need 5 bits not 16 bits.
So we can compress bits of the original these fields, so we can decrease the requirement of storage
space, speed up classification.

Let the value of protocol type is x8, the value of source port is y16, the value of object port is
z16, and compressed values are x4, y6, z6 respectively, then the value of m which is compressed from
above fields and have 16 bits width is:

m=x4+24y6+210z6

Then we compress 3 fields into a field with 16 bits, this means 40 bits is cut down to 16 bits,
the compression rate is 60%. Mapping graph see figure 3.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Object port

Source port

Protocol type

Figure 3. Object port, source port and protocol type mapping into a 16bit-field

Source and object IP address fields can be compressed like this too. For IPv6, source and
object IP address fields are all 128 bits, it’s too wide. If we don’t compress, the efficiency of our
algorithm is too low and storage space is too large, so we must compress. In this algorithm it is
acceptable, so we don’t need to compress the source and object IP address fields.

2. Partition operations
Partition operation is like regional partition algorithm [11], but there are some different

between them. One is that our algorithm needs partition the compressed rules into 5 fields, which
have 16 bits, and we call it partition field. The other is that our algorithm don’t need partition the
compressed rules into only 1 or 0 matched rules, but into 5 partition fields and matched rules of
each partition field can be read out from memory at one time. In this example, it need less than 7
not 1, at the same time we need the number of matched rules of front partition fields is less than
latter partition fields. When we create index-list-table from compress-partition-rule-table, if
partition field use 8 bits, then we can create 28=256 index, although the index space is too small, the
lookup efficiency is too low, if partition field use 24 bits, then we can create 224=8M index, the
index space is too huge, so the requirement of storage space is too large, if use other bits that don’t
suit the hardware characteristic of computer. The compress operation has compressed 104 bits of a
rule into 80 bits of a rule, then we partition 80 bits of a rule into 5 partition fields, each partition

25

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2005 | No.3(7)

field has a 64k rows table (1k=1024=216), we call it index-list-table. When partition 80 bits into 5
partition fields, the operations, like regional partition algorithm, first analysis the distribution of the
values of 5 partition fields, compared all kinds of partition methods, find well-proportioned
distribution method, especially the front partition fields. In other words the aim of partition
operations is to let the values of each partition field is well-proportioned distribution, especially the
front partition fields. Then we can read out matched rules and its number of each partition field,
which is in list of index-list-table, from memory in one time, when we lookup index-list-table.

Figure 4 show an example which partition compressed rule set into compress-partition-rule-
table in this algorithm. Table 1 shows the pseudo code used to create compress-partition-rule-table
from figure 4.

Rule
Rule0
Rule1
Rule2
Rule3
…

Partition field 1
0x01f9
0x27ee
0x1899
0x1354
…

Partition field 2
0x0f87
0x1969
0xe178
0xe05d
…

Partition field 3
0x0218
0x0008
0x1472
0x0f12
…

Partition field 4
0xa012
0xa419
0xa29f
0xa239
…

Partition field 5
0xa19e
0xa818
0xa082
0xa707
…

Compress-
partition-rule-

table

Rule Combine
field

Rule0 0x0218

Rule1 0x0008

Rule2 0x1472

Rule3 0x0f12

… …

Source IP
address

160.25.249.18
0xa019f912

164.66.39.25
0xa427ee19

162.24.153.159
0xa218999f

162.19.53.84.57
0xa2135439
…

Object IP
address

161.15.248.158
0xa10f879e

168.25.105.24
0xa8196918

160.62.23.130
0xa03e1782
167.224.93.7
0xa7e05d07
…

Compressed rule set

Partition

Figure 4. Partition compressed rule set into compress-partition-rule-table (P=5 partition fields)

Table 1 Pseudo code used to create compress-partition-rule-table from figure 4.
void create_ rule_table()
{ long int old_rule[N]; // old_rule[N] store original rule set

// N is number of rules, only stored temporarily.
old_rule⇐rules; // initialize.
long int new_rule[N]; // new_rule[N] store compress-partition-rule-table

// N is number of rules, store it into SRAM for the best.
new_rule⇐0; // initialize.
long int new_field ; // used to store 5 partition fields of each rule temporarily.

 for (i=0; i<N; i++) // i is rule i.
{

take out the i rule and compress it with compress operation;
partition it into 5 16bits with partition operation;

 store 5 16bits into new_field;
 store new_field into new_rule[i] .
 }

}

26

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2005 | No.3(7)

2.2.2 Create index-list-table from compress-partition-rule-table
1) The data structure of index-list-table
As state at above, 5 partition fields create 5 index-list-tables. That is to say, there are 5 64k-

tables. Structure sketch map of 64k-table is shown in figure 1.
The index value of index-list-table is the value of corresponding partition field. The first

column of list of each index-list-table is the number of matched rules of partition field. The other
columns are pointers (sequence number of rules) of compress-partition-rule-table, which point to
these rules and to be saved in the order of the rules number. Furthermore, considered in special
conditions, the matched rules of partition field isn’t read out from memory at a time, the last column
of list of index-list-table is alternative, one is pointer like other columns, another is special pointer
to list of chain table, which is a special table and will be depicted more in 2.3.2. The alternative
column is decided by the number of matched rules of partition field, if the number of matched rules
of partition field many more than one time memory read, then the column is the special pointer to
list of chain table. The detailed data structure of index-list-table (64k-table) is showed in figure 5.

18 4 7 6
0
0
2 0 2 …

…
1 1

0x0000
0x0001
0x0002
0x0003
0x0004

0xffff

Num ber of
m at ched rules

An order number of
m atched rules

An order number of m at ched
rules or special po int er*Index value

*T he last column is alt ernat ive, t hat is p o i n t e r t o c o m p r e ss - p a r t i t i o n - r ul e - t a bl e o r sp e c i a l
point er t o list o f index-list -chain-t able

Figure 5. Detail data structure of index-list-table (64k-table)

In figure 5, the last column is special pointer where the index value of the row of the column is
0x0002. In this example we assume the number of matched rules, which can be read out from
memory in one time, is 7 (8 columns-1 number of matched rules, 8*16bits=128bits), because of
9>7, the last column is special pointer to list of index list chain table. Then we must create storage
space for it, this storage space also include 64k rows, which can be read out from memory in 1 time.
The structure of this storage space is like index-list-table, but the first column isn’t the number of
matched rule, it’s order number of matched rule.

2) Index operation
Index operation is important operation in this algorithm. This section will depict the process of

index operation in detail. A filter rule is compressed and partitioned into compress rule table, each
rule is compressed and partitioned into 5 partition fields. Then 5 partition fields are inserted into
corresponding list of 5 index-list-tables by the value of partition field, we called it index operation.

Now we narrate how to index, Let the value of a partition field is x, the partition operation of
the y rule of compress-partition-rule-table is adding 1 to the value m of the first column of x row in

27

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2005 | No.3(7)

index-list-table, then store y to m+2 column. Figure 6 show us how to index and index result for a
partition field.

Considered rule 4 of figure 6, the value of this partition field is 0x0218, use this value to
lookup row in index-list-table, add 1 to the first column of the row, the value become 2, then store
the order number of rule, which is 4, into 2+1 =3 column of the row. We can insert all partition
fields into corresponding index-list-tables in this way. The whole mapping graph sees figure 2, there
P=5,that is to say, there are 5 partition fields.

Rule Partition field x
Rule0 0x0218
Rule1 0x0008
Rule2 0x1472
Rule3 0x0f12
Rule4 0x0218

0
0
0

…
1 1

…

2 0 4 …

…

1 3

…

1 2

0x0000
0x0001
0x0002

0x0008

0x0218

0x0f12

0x1472

0xffff

Number of
mat ched

rules

An order number
of mat ched rules

An order number of
mat ched rules or
special point er*

Index value

Figure 6 Structure of index-list-table and process of index for a partition field

2.2.3 Process of lookup
Process of lookup is we take out all classification fields in packet when we accept a packet,

compress and partition the classification fields into 5 16 bits partition fields, then lookup 5
index-list-tables with the value of 5 partition fields and read out 5 list in order. Look for the value
of first column (order number of partition field matched rules) of the list, if 0 it means no matched
rules, if not 0, then we compare with K+5-I (K will discuss in 2.3.1, 5-i is remainder index-list-
tables which aren’t read out yet), if less than K+5-i, we lookup compress-partition-rule-table with
the values of other columns of this list to find full matched rule, for these values of other columns
is the order number of rules in compress-partition-rule-tables. Under the other circumstance, we
intersect tow list, then intersect to another list, etc. until the number of matched rules is less than K,
then we also lookup compress-partition-rule-table with the values of columns of this intersect list to
find full matched rule. Lookup flow chart is shown in figure 7.

28

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2005 | No.3(7)

Start

Accept packet

Take out packet classification field
then compress & partition

Lookup the i index-list-table with partition
field i (initial value is 1)

Number of field matched
rules=0

Find out the least number of field
matched rules in 5 lists

Number of
matched rules <K

Process module of this rule

Has full matched rule
in rule table?

End

Intersection
operation

N

Y
N

Y

N

Y

Number of field matched
rules<K+5-i

Y
N

i++
i<5?

Y

N

Figure 7. Flow chart of lookup operation
In this example we design each column of index-list-table as 16 bits, 216=65536, so we can

complete classification less than 5+k times memory read under less than 65,536 rules. If more than
65,536 rules, we can design each column of index-list-table as 24 bits. We can conclude it from [1],
so this algorithm needn’t any modification usually.
2.3 Tow detail problem in implement of the algorithm
2.3.1 Determine the value of K in the algorithm

The value of K is relative to specific hardware, we can get different K in different hardware.
There are several operation time in this algorithm, read out compressed rule in compress-partition-
rule-table from memory, we assume it as Mrule; read out a list in index-list-table from memory, we
assume it as Mindex; compared with compressed rule in compress-partition-rule-table, we assume it
as C; intersection operation, we assume it as I; lookup a column in a list, we assume it as L. After
lookup several index-list-table, there are k field matched rules or partially matched rules, continue
to intersect or not, we can conclude from this equation:

5Mindex+k (L + Mrule + C) <5Mindex+I+L+Mrule+C
that is: k (L + Mrule + C)< I + L + Mrule + C

The left means the time of this k rules matched packet or not. The right means the time of
continuous intersection. Then

CML
Ik

CML
CMLIk

rule

rule

rule

++
+<

++
+++<

1
 so K is:

++
+=

CML
I
rule

1K

2.3.2 Index-list-chain-table
Index-list-chain-table is complementary table of index-list-table. This table is created for the

number of partition field matched rules more than the columns of list of index-list-table. The

29

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2005 | No.3(7)

structure of this table like index-list-table, but the first column isn’t the number of matched rules,
it’s also order number of matched rule. Because the list in index-list-table is used a little (this we
can see partition operation and [1]), we don’t consider it when we research. But we must create it
when we implement this algorithm. We call it chain-table sometimes in this paper.
2.4 Complexity analysis of time and space
2.4.1 Space complexity of the algorithm

Assume the number of rules is N, if each rule is precise value, then the requirement of storage
space is the least. Because each rule is compressed into a row in compress-partition-rule-table, the
requirement of storage space is N. The requirement of storage space of P index-list-tables is PN,
and a chain table is N, totally is (P+2)N. Because P is the number of partition fields, then P+2
=(R*W/16)+2 =C1D, D is dimension of classification, R is compressed rate of compress operation,
W is width of classification, C1 is constant coefficient. So we can see the space complexity is
O(DN). In this example, under less than 65536 rules, compress-partition-rule-table need: 216rules *
80bits / 8bits per byte = 640K<1M, 5 index-list-table and 1 index list chain table need: 6 * (216 rows
* 128 bits per list / 8 bits per byte) = 6 * 220 bytes = 6M, totally need less than 7M.
2.4.2 Time complexity of the algorithm

Under the worst condition (mainly analyses memory read time, other include intersection
operation), P lists in P index-list-table must be read out, each list 1 time memory read, totally P
times memory read, and K times compress-partition-rule-table read. So memory read times in this
algorithm is P+K under worst conditions. P is the number of partition fields, so P+K
=(R*W/16)+K=C2D, D is dimension of classification, R is compressed rate of compress operation,
W is width of classification, C2 is constant coefficient. Under the most condition, it’s less than P+K
times, so we can see the time complexity is O(D).
2.4.3 Compared with other algorithm

Table 2. Compared with other algorithm
Name of algorithm time

complexity
space

complexity
Introduction

RFC D Nd misfit large rule set, need large storage space
and parallel computing capability.

Hierarchical
cuttings

D Nd Storage space too large

Tuple-space search N N Under the worst conditions, time complexity
is O(N), too slow.

PCBNP ≤ D N2 Multi-dimension, fast, not demand large
storage and parallel computing capability,
misfit large rule

This algorithm ≤ D DN Multi-dimension, fast, not demand large
storage and parallel computing capability,
support ten thousand about rules.

From table 2 we can see, compared with other algorithm, this algorithm can support ten
thousand rules about, has fast classification speed, need less storage space, so it’s a better algorithm
for packet classification under ten thousand rules about.

30

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2005 | No.3(7)

3 Conclusion

The development of Internet application necessitates next–generation router’s ability to
support those functions such as Network Intrusion Detection Systems, QoS, Loading Balance etc.
Although implementation of these functions varies mostly, they all need packet classification.

But study has shown that it is difficult to develop a fast and multi-dimensions packet
classification algorithm that can deal with a large number of the rules, packet classification has
already been a new bottleneck of router. With the development of the network and appearance of
IPv6, the situation will become worse. The conflict leads to packet classification be one of
important research issues in network technology fields. So it attracts many researchers’ attention in
recent years.

In this paper a new fast scalable multi-dimension packet classification algorithm named CPI is
given. It can support about ten thousands multi-dimension rules, and have fast speed of packet
classification, low expected storage complexity. Compared with existing classification algorithms,
this algorithm is better than those existing classification algorithms when ten thousands of multi-
dimension rules are included, so it can be used in real application.

31

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2005 | No.3(7)

4 References

1. Tian Liqin, Lin Chuang. Study and application of packet classification. Journal of computer
research and development, 2003,6: 765-6775

2. Tian Liqin, Lin Chuang, Xiao Renyi, Li Yajuan. Design and implementationof fast packet
classification based onIXP1200, Journal of computer research and development, 2003,11: 1616-
1625

3. A.N.M. Ehtesham Rafiq, M. Watheq El-Kharashi, Fayez Gebali. A fast string search algorithm
for deep packet classification. Computer Communications 27 (2004) 1524–1538

4. F.Baboescu, G.Varghese. Fast and scalable confict detection for packet classifers, Computer
Networks 42(2003) 717-735

5. Ying-Dar Lin, Huan-Yun Wei, Kuo-Jui Wu. Ordered lookup with bypass matching for scalable
per-flow classification in layer 4 routers, Computer Communications 24 (2001) 667-676

6. F. Baboescu, G.Varghese. Fast and scalable confict detection for packet classifers, Computer
Networks 42(2003) 717-735

7. Pankaj Gupta and Nick McKeown. Packet classification using hierarchical intelligent cuttings.
In Proc.ACM Sigcomm’98,Sept.1998

8. Packet classification using tuple space search, Srinivasan, S.Suri, and G.Varghese, in
Proceedings of SIGCOMM’99,1999

9. T.V. Lakshman and D. Stiliadis. High speed policy-based packet forwarding using efficient
multi-dimensional range matching. in Proceedings of ACM SIGCOMM’98,1998

10. Zhu Qiuxiang, TaoJun. Algorithms for packet classification, Mini- micro systems,
2004,10:1802-1810

11. Yan Tian-xin, Wang Yong-gong, Shi Jiang-tao, Dai Xue-long. Optimized implementation of
regional partition algorithm for packet classification, Journal of China institute of
communications, 2004,6:80-88

12. Shan Zheng, Zhao Rongcai, Zhang Zheng. Research of algorithms for packet classification,
Computer engineering and application, 2005,7:149-152

figures: 7
tables:2

Article received: 2005-09-22

32

