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Necessary Conditions of Externality of Initial Moment for One Class Variation
Problem with Delay Argument

L. Alkhazishvili, T. Tadumadze
Control Theory Chair, Iv. Javakhishvili Tbilisi State University

Abstract.
Necessary conditions of extremality are obtained in the form of Euler’s equation, the
condition of Wierstrass-Erdmann and transversality condition. The condition in the initial
moment unike the early known condition, contains a new member.

Let ]b,a[J =  be a finite interval and nRO ⊂    be an open set; the function ),x,x,x,t(f 321  is

defined on nROOJ ×××  and satisfies the following conditions: for almost all Jt ∈ , the function
f  is continuously differentiable with respect to ( )321 x,x,x  for each fixed ( )321 x,x,x  nRO ×∈ 2 , the

functions  321 ,,i,f,f
ix =  are measurable on J ; for arbitrary compacts nRV,OK ⊂⊂  there exists

the summable function Jt),t(m V,K ∈ , such that
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Further, let Φ  be a set of absolutely continuous functions Jt,O)t(x ∈∈ , satisfying the condition

const)t(x ≤& . Jt,)t( ∈>τ 0&  is absolutely continuous function satisfying the conditions ,t)t( ≤τ
0>τ )t(& ; ,O)t( ∈ϕ  [ ]b),a(t τ∈  is piecewise continuous function with a finite number of

discontinuity points, satisfying the conditon [ ]{ } ;Ob),a(t:)t(cl ⊂τ∈ϕ  Oa,a ⊂10  are fixed

points.
Let us consider the variational problem

,a)t(x,a)t(x

,OJA))(x,t,t(zmin,dt))t(x)),t((x),t(x,t(f)z(I
t

t
t

1100

2
10

1

0
0

==

×=∈⋅=→� τ= &

 where,
[ )

�
�
�

∈
τ∈ϕ

=
] .b,t[t),t(x

,t),a(t),t(
)t(xt

0

0

0

DEFINITION1.  The element Az∈   is said to be admissible, if the condition  holds. The set of
admissible elements will be denoted by 0A .

DEFINITION2. The element  010 A))(x~,t~,t~(z~ ∈⋅=  is said to be locally extremal, if there exists a

number  0>δ   such that for an arbitrary element  0Az∈   satisfying
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the inequality   )z(I)z(I ≤&     holds. Variational problem consists in finding locally extremal
element.
THEOREM1. Let 0Az~∈   be a locally extremal element,
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 Then the following conditions are fulfilled:
1) for almost all   [ ]10 t~,t~t ∈
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where )t(χ  is characteristic function of interval [ ] )t(y,t~,t~ 10  is the function inverse to ),t(τ
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THEOREM2.  Let 0Az~∈    be a locally extremal element, [ ) ( ) [ ) ;t~,t~,b,at~,b,at~ 10010 ∈γ∈∈

and there exist the finite limits ]t~[f
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Then the conditions 1), 2) are fulfilled and, moreover,
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THEOREM3. Let  0Az~ ∈   be a locally extremal element, )t~,t~(),b,a(t~),b,a(t~ 10010 ∈γ∈∈
 and the assumptions of theorems 1,2 are fulfilled. Let, besides:
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Then the conditions 1) ,2) are fulfilled, and
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REMARK.    Assume that the function  )t(γ&  is continuous at point 0t
~ , the function )t(ϕ  is

continuous on  ]b),a([ τ  ; the function )x,x.x,t(f 321   is continuous at points
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These theorems have been proved in standard way [1], and are based on necessary conditions of
optimality [2].
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