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Abstract
The Cauchy abstract problem for non-homogenous evolution equations is considered
in Banach space in case of limited operator. Is constructed sequential-parallel

decomposition scheme with third degree precision. For the approximation of solution
explicit prior estimations are obtained.

Asiswell known, decomposition method is sufficiently general for obtaining the economical
schemes for the solution of the multidimensional problems of mathematical physics. They can be
divided in two groups: the schemes of sequential account (N. N. lanenko [1], A. A. Samarskii [2],
E. G. Diakonov [3], Marchuk G. I. [4], D.G. Gordeziani [5], Temam R. [6], Gegechkori Z. G. and
Demidov G. V. [7]) and the schemes of parallel account (D. G. Gordeziani and H. V. Meladze [8],
[9], D. G. Gordeziani and A. A. Samarskii [10]).

In the above-stated works the considered schemes are of the first or second precision order.
As far as we know, the high degree precision decomposition formulas in case of two addands

(A =A+ Az) for the first time were obtained in the work [11].

In the present work, there a symmetrized sequential-parallel method of the third degree
precision is offered for the solution of Cauchy abstract problem in case of bounded operator.

The present scheme may be generalized for any finite number of addends

(A=A +A +..+A,, m22)

Let us consider Cauchy abstract problem in Banach space X:

du(t)

——2+ Au(t)= f(t), t>0, (1)

TR Y u(0)=9.
Here A is bounded linear operator, ¢ isagiven element from X, F)UC([0,0); X))
The solution of the problem (1) is given by the following formula:

u(t)=U(t,A)b +[U(t - A)f(s)ds, 7

0

where
o k
UGt A) = exp(-tA) = 3 (-1)* 1 A,
k=0 k!

Let AZATA , Where A , (i=1,2) are bounded linear operatorsin X.
Let usintroduce difference net domain:

w, ={t, =kt:1>0k=12,.}.

Along with problem (1) on each [tk-1 ’tk] interval we consider two sequences of the following
problems:
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dVi(t) 1 _a - - !
T"’aAin(t)_Ef(tk) 20,(t, —t)f' (1),

V&(tkl):ukl(tkl)
de(t)+A2 (t)__f(t) 20,(t, —t)f'(t,),

V(b)) =vie(t),
dvi (1)

(t, —t)

+0(Aivk(t)——f(t) 20, (t, ~t)f' (t, )+ (1, ),
Vit ) = ve(t, )
d""gt(t)mAzwﬁ(t):%f(tk)—zoo(tk—t)f'(tk),
W (tes ) = Uea (b ),
M) pwi() =2 1(1,)-20,(, ~OF (1)
Wk(tk_l)—Wﬁ(tk),
dwi(t)+aA2wf(t):%f(tk)—202(tk—t)f'(tk) (t, _t) (),
Wi (tey ) = Wi (L ).

Us(0) =9

a,0,,0;

Here ‘92 are numerical complex parameters, which will be defined later,

The function Y<® on each [beatd] (K=12...) irverval is defined as follows:
1
INCEE HORUAC)

We declare the function uy (0 as the approached solution of the problem (1).
Above-stated scheme in case of homogenous equation is considered in [12].

q:liii (|:\/—_]_)’
THEOREM. If 2 23
0,,0,,

F()OC*([0,2); X), and the parameters
02 satisfy the following relations: - -
_2-a_2+a_ . lta _3-2d
°“4+a 4+a " 2 24+a) 4+a

0,

where 91 is any complex number then

Juct, ) —u ()] < Ce‘*"ktkrs(”q)” +t, m?ojtp] HOIE:

©)
e s [+ s |0+ s 0]

where €& are positive constants.
SCHEME OF THE PROOF:
According to the property of semigroup the formula (2) we can transform as follows:

U(t, ) =U (T A) +3U (1, AR, (@)
i=1

where

41



Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2005 | No.2(6)

t
F® = JU(t, —s,A)f(s)ds
G .

Uy (t) can be written in the following expression:

U (t) =VE (D)0 + SV (1R, ®)
where
V(1) =2 u(tam U A 0 (ran) +U(an 0 (nA W (T, )|
R = V(tt —s)(% f(t,)=20,(t, ~0)F'(t, )jds+
+ }Vl(T’ti _S)|:% f(t)—20,(t —t)f (¢, )}ds"'
+ Vit —s)[% (1)~ 20,(t, ~0)F' (1 )+@ ( )}ds
and |

V(1) = S V(1A U (A U(taA ) +U(TaA, WA U(taA,)]
Vit =2 U raA WA FU(tan, U (LA )

Vo(t) = %[U(t,aAl )+U(t,aA, )]_
From the equalities (4) and (5) we have:
() ~u(t) =V (T A) Vil +
+3 U (L A) -V RO V(O - F2).
Itis proved that, (see[lfz]);

(6)

Hu “(1,A) —vk(r)H < ce™t, 1%
Also the following estimation takes place:

L RSN (TR T R I PTG

According to this estimations and formula (6) we obtain estimation (3).
Scheme of the proof is finished.
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