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Abstract
For the quasi-linear neutral type problem of optimal control, necessary conditions of

optimality in the form of an integral maximum principle and the transversality conditions are
obtained.

Let  ],[ baJ =  be a finite interval; 
nRO ⊂  be a open set; OM ⊂  be a convex bounded set;

rRU ⊂  be a compact set; 
pRV ⊂  be a convex bounded set; 

11: RR →τ , 
11: RR →η  are an absolutely

continuous and continuously differentiable functions, respectively, and satisfying the conditions:
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 1Ω  is a set of measurable functions
UJu →: ; Ω 2  is a set of measurable functions VJv →: ; ),( vtA  is a nn ×  dimensional matrix

function, continuous on VJ ×  and continuously differentiable with respect to Vv ∈ ;

Next, the function 
nRUOJf →×× 2:  satisfies the following conditions:

1) for a fixed Jt ∈  the function ),,,( 21 uxxtf  is continuous with respect   to UOuxx ×∈ 2
21 ),,(

and continuously differentiable with respect to 
2

21 ),( Oxx ∈ ;

2) for a fixed  UOuxx ×∈ 2
21 ),,(  the functions ,f  

,2,1, =if
ix  are measurable with respect to t;

for an arbitrary compact  OK ⊂  there exist ,0>= constmK  ),,()( 01
+∈ RJLtLK  ),0[0 ∞=+R  such that
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To every element ),,,,,( 010 vuxtt ϕµ = ,21
2 Ω×Ω×∆××=∈ OJB

  
,10 tt <

  corresponds the
differential equation

))),t(u),t((x),t(x,t(f))t((x))t(v,t(A)t(x τ+η= &&   [ ]10 t,tt ∈
with initial condition

[ ) .x)t(x,t),t(t),t()t(x 0000 =ρ∈ϕ=

DEFINITION 1.  The function ),[],),([,),()( 1010 tattttOtxtx ∈∈∈= ρµ , is said to be solution

corresponding to the element B∈µ , if  on [ ]00 ),( ttρ  it satisfies the condition (2), while on the interval
[ ]10 , tt  is absolutely continuous and satisfies the equation (1) almost everywhere.

DEFINITION 2.  The element B∈µ  is said to be admissible, if the corresponding solution )(tx

satisfies the conditions ( ) ,0)(,,, 1010 =txxttq i
.1 li Κ=

The set of admissible elements will denoted by 0B .

DEFINITION 3.  The element  ( ) 0010
~,~,~,~,~~ Bvuxtt ∈=µ   is said to be locally optimal, if there exist a

number 0>δ   and compact set OX ⊂  such that for an arbitrary element  0B∈µ   satisfying

(1)

(2)
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The problem of optimal control consists in finding a locally optimal element.

THEOREM 1. Let ,~
0B∈µ ),,(~ bati ∈  ,1,0=i  be a locally optimal element; ∈= )~( 00 tγγ ),~,~( 10 tt
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1 11 tt mm ηη +∈
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such that following conditions  are fulfilled:
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Here  
Tl )q,,q(Q Λ0= ,  Q

~
  means that the corresponding gradient is calculated at the point

))t~(x~,x~,t~,t~( 1010 ;  
)))t((x~),t(x~,t(f

~
]t[f

~
ii xx τ=

.
Finally we note that  the theorem formulated above are an analogue of theorem given [1]. This

theorem is proved, using formula of the differential of solutions with respect to the initial data and the right-

hand side [2], by the scheme described in [3]. The case, when  )(~ tv  is the piecewise continuous function, is
considered in [4].
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