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Abstract.
The lattice operations for split subsets are considered when the values of membership

function belong to the pseudo-boolean algebra.

Let us consider a set of pairs of kind ( )AA I)(,I µ−µ 1 , where Ω⊆A , Ω  is universal

domain, A - his fixed subset, µ - any mapping of Ω  into [0,1] and AI - characteristic function or
indicator of A   /1/.

Introduce ∧  (greatest lower bound) and ∨  (least upper bound) operations traditionally
componentwise:

( ) ( ) ( )TY,ZXT,ZY,X ∨∨=∨
( ) ( ) ( )TY,ZXT,ZY,X ∧∧=∧

Take arbitrarily two pairs ( )AA I)(,I µ−µ 1  , ( )AA I)(,I ν−ν 1  ,  
Ω∈νµ ],[, 10  and consider

their l.u.b. and  g.l.b:
( )( ) =ν−∨µ−ν∨µ )x)(II)((),x)(II( AAAA 11
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Thus the set of kind ( )AA I)(,I µ−µ 1  is not closed with respect to operations ∧  and ∨ . If we

want to keep closety, then operations will be defined as follows: ( ) ( ) ( )TY,ZXT,ZY,X ∧∨=∨

In this case, we have:
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∧  and ∨  operations induce a following partial ordering relation between the pairs
( ) ( ) ( ) ( ) ( ) ⇔=∨⇔≤ T,ZT,ZY,XT,ZY,X

( ) ( ) ( )Y,XT,ZY,X =∧⇔ ( ))u(Z)u(X ≤⇔ & ( ))u(T)u(Y ≥

Au,],[T,Z,Y,X A ∈∈ 10 .

The complement ( )cY,X  of pair ( )Y,X  is defined in this way:  ( ) ( )Y\I ,X\IY,X AA=



Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2005 | No.2(6)

52

Denote by a symbol L  the lattice of fuzzy subsets of Ω  and by symbols 
rL the lattice of same

subsets with reverse order. It is fairly straitforward to show that the following theorem holds:

THEOREM 1. Pairs of kind ( )AA I)(,I µ−µ 1  for fixed Ω⊆A  and any 
Ω∈µ ],[ 10  form

complemented distributive lattice, which is a sublattice of 
rLL × , satisfying de Morgan's law; the

complement is involutory and order reversing.
Now suppose, that the values of membership function µ  belong to the pseudo-boolean

algebra B=
≤,B

  /2/.  As intuitionistic negation is not, in general, involutory, the unique splitting
into  contrary pair is impossible /3/. In this case, the construction defined below perhaps proved to
be useful.

We introduce the “ ≈  “  relation between elements of B  and between their pairs as follows:

DEFINITION 1.  
)ba()ba(

df

∗∗ ==≈
, Bb,a ∈ .    Here 

∗)(    denotes pseudo-complement.

2. 
( ) ( ))db()ca()d,c()b,a(

df
≈≈=≈  and 

, Bd,c,b,a ∈ .

3.  
)b,a()b,a(

df

∗∗∗ = 
, Bb,a ∈ .

It is evident that    “ ≈  “  is an equivalence relation.

THEOREM 2.  If    ,aa 21 ≈  21 bb ≈  then
( ) ( ))b,b()a,a()b,b()a,a( ∗∗∗∗ ∨≈∨ 22221111 , 

∗∗∗∗ ≈ )a,a()a,a( 2211

PROOF .
)ba,ba()ba,ba()b,b()a,a( ∗∗∗∗∗∗ ∧∨=∧∨=∨ 221111111111

)ba,ba()b,b()a,a( ∗∗∗∗ ∧∨=∨ 22222222  ,        
∗∗∗ ∧=∨ 1111 ba)ba( =

∗∗∗ ∨=∧ )ba(ba 2222 .
2. follows immediately from definitions.
Let  BB' ⊂  be the set of elements satisfying the following condition:

∗∗∗ ∨=∧ ba)ba(

THEOREM 3.  If 
'Bd,c,b,a ∈ , ,aa 21 ≈ 21 bb ≈  then

( ) ( ))b,b()a,a()b,b()a,a( ∗∗∗∗ ∧≈∧ 22221111

Proof by analogy with case 1. of theorem given above. Thus, we can consider the factor set

≈
× '' BB

.
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