Contrary Pairs in Pseudo-Boolean Algebra

G. Kashmadze

Chair of Cybernetics, Iv. Javakhishvili Tbilisi State University

Abstract.

The lattice operations for split subsets are considered when the values of membership function belong to the pseudo-boolean algebra.

Let us consider a set of pairs of kind $\left(\mu I_{A},(1-\mu) I_{A}\right)$, where $A \subseteq \Omega, \Omega$ is universal domain, $A_{\text {- his fixed subset, }} \mu_{\text {- any mapping of }} \Omega$ into $[0,1]$ and $I_{\text {- characteristic function or }}$ indicator of $A / 1 /$.

Introduce \wedge (greatest lower bound) and \vee (least upper bound) operations traditionally componentwise:

$$
\begin{gathered}
(X, Y) \vee(Z, T)=(X \vee Z, Y \vee T) \\
(X, Y) \wedge(Z, T)=(X \wedge Z, Y \wedge T)
\end{gathered}
$$

Take arbitrarily two pairs $\left(\mu I_{A},(1-\mu) I_{A}\right),\left(v I_{A},(1-v) I_{A}\right), \mu, v \in[0,1]^{\Omega}$ and consider their l.u.b. and g.l.b:
$\left(\left(\mu I_{A} \vee \vee I_{A}\right)(x),\left((1-\mu) I_{A} \vee(1-v) I_{A}\right)(x)\right)=$

$$
= \begin{cases}(0,0) & \text { if } x \notin A \\ (v(x), 1-\mu(x)) & \text { if } x \in A, \mu(x) \leq v(x) \\ (\mu(x), 1-v(x)) & \text { if } x \in A, \mu(x)>v(x)\end{cases}
$$

$\left(\left(\mu I_{A} \wedge v I_{A}\right)(x), \quad\left((1-\mu) I_{A} \wedge(1-v) I_{A}\right)(x)\right)_{=}$

$$
= \begin{cases}(0,0) & \text { if } x \notin A \\ (\mu(x), 1-v(x)) & \text { if } x \in A, \mu(x) \leq v(x) \\ (v(x), 1-\mu(x)) & \text { if } x \in A, \mu(x)>v(x)\end{cases}
$$

Thus the set of kind $\left(\mu I_{A},(1-\mu) I_{A}\right)$ is not closed with respect to operations \wedge and \vee. If we want to keep closety, then operations will be defined as follows: $(X, Y) \vee(Z, T)=(X \vee Z, Y \wedge T)$

In this case, we have:

$$
\begin{array}{rll}
\left(\left(\mu I_{A} \vee \vee I_{A}\right)(x),\right. & \left.\left((1-\mu) I_{A} \wedge(1-v) I_{A}\right)(x)\right)= \\
& \begin{cases}(0,0) & \text { if } x \notin A \\
(v(x), 1-v(x)) & \text { if } x \in A, \mu(x) \leq v(x) \\
(\mu(x), 1-\mu(x)) & \text { if } x \in A, \mu(x)>v(x)\end{cases} \\
\left(\left(\mu I_{A} \wedge v I_{A}\right)(x),\right. & \left.\left((1-\mu) I_{A} \vee(1-v) I_{A}\right)(x)\right)= \\
& = \begin{cases}(0,0) & \text { if } x \notin A \\
(\mu(x), 1-\mu(x)) & \text { if } x \in A, \mu(x) \leq v(x) \\
(v(x), 1-v(x)) & \text { if } x \in A, \mu(x)>v(x)\end{cases}
\end{array}
$$

\wedge and \vee operations induce a following partial ordering relation between the pairs

$$
\begin{gathered}
(X, Y) \leq(Z, T) \Leftrightarrow(X, Y) \vee(Z, T)=(Z, T) \Leftrightarrow \\
\Leftrightarrow(X, Y) \wedge(Z, T)=(X, Y) \Leftrightarrow(X(u) \leq Z(u)) \&(Y(u) \geq T(u)) \\
X, Y, Z, T \in[0,1]^{A}, u \in A .
\end{gathered}
$$

The complement $(X, Y)^{c}$ of pair (X, Y) is defined in this way: $(X, Y)=\left(I_{A} \backslash X, I_{A} \backslash Y\right)$

Denote by a symbol L the lattice of fuzzy subsets of Ω and by symbols L^{r} the lattice of same subsets with reverse order. It is fairly straitforward to show that the following theorem holds:

THEOREM 1. Pairs of kind $\left(\mu I_{A},(1-\mu) I_{A}\right)$ for fixed $A \subseteq \Omega$ and any $\mu \in[0,1]^{\Omega}$ form complemented distributive lattice, which is a sublattice of $L \times L^{r}$, satisfying de Morgan's law; the complement is involutory and order reversing.

Now suppose, that the values of membership function ${ }^{\mu}$ belong to the pseudo-boolean algebra $B=\langle B, \leq\rangle / 2 /$. As intuitionistic negation is not, in general, involutory, the unique splitting into contrary pair is impossible $/ 3 /$. In this case, the construction defined below perhaps proved to be useful.

We introduce the " \approx " relation between elements of B and between their pairs as follows:

$$
(a \approx b) \underset{d f}{ }=\left(a^{*}=b^{*}\right), a, b \in B . \text { Here }()^{*} \text { denotes pseudo-complement. }
$$

DEFINITION 1.
$((a, b) \approx(c, d))=((a \approx c)$ and $(b \approx d)), a, b, c, d \in B$.

$$
(a, b)^{*}=\left(a_{d f}^{*}, b^{*}\right), a, b \in B .
$$

It is evident that " \approx " is an equivalence relation.
THEOREM 2. If $a_{1} \approx a_{2}, b_{1} \approx b_{2}$ then

$$
\left(\left(a_{1}, a_{1}^{*}\right) \vee\left(b_{1}, b_{1}^{*}\right)\right) \approx\left(\left(a_{2}, a_{2}^{*}\right) \vee\left(b_{2}, b_{2}^{*}\right)\right),\left(a_{1}, a_{1}^{*}\right)^{*} \approx\left(a_{2}, a_{2}^{*}\right)^{*}
$$

PROOF.

$$
\begin{gathered}
\left(a_{1}, a_{1}^{*}\right) \vee\left(b_{1}, b_{1}^{*}\right)=\left(a_{1} \vee b_{1}, a_{1}^{*} \wedge b_{1}^{*}\right)=\left(a_{1} \vee b_{1}, a_{2}^{*} \wedge b_{2}^{*}\right) \\
\left(a_{2}, a_{2}^{*}\right) \vee\left(b_{2}, b_{2}^{*}\right)=\left(a_{2} \vee b_{2}, a_{2}^{*} \wedge b_{2}^{*}\right), \quad\left(a_{1} \vee b_{1}\right)^{*}=a_{1}^{*} \wedge b_{1}^{*}=a_{2}^{*} \wedge b_{2}^{*}=\left(a_{2} \vee b_{2}\right)^{*} .
\end{gathered}
$$

2. follows immediately from definitions.

Let $B^{\prime} \subset B$ be the set of elements satisfying the following condition:

$$
(a \wedge b)^{*}=a^{*} \vee b^{*}
$$

THEOREM 3. If $a, b, c, d \in B^{\prime}, a_{1} \approx a_{2}, b_{1} \approx b_{2}$ then

$$
\left(\left(a_{1}, a_{1}^{*}\right) \wedge\left(b_{1}, b_{1}^{*}\right)\right) \approx\left(\left(a_{2}, a_{2}^{*}\right) \wedge\left(b_{2}, b_{2}^{*}\right)\right)
$$

Proof by analogy with case 1 . of theorem given above. Thus, we can consider the factor set $B^{\prime} \times B^{\prime} / \approx$.

REFERENCES

1. F. Criado, T. Gachechiladze. Fuzzy random events and their corresponding conditional probability measures. Publicado en la Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales, de Madrid. Tomo LXXXIX, Cuaderno 1. ${ }^{\circ}-2 .{ }^{\circ}$
2. Е. Расева, Р. Сикорски. Математика Метаматематики. Москва. Наука. 1972.
3. R. Yager. On the Measure of Fuzziness and Negation. Part II. Inf. and Control. 44. 1980.
