Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006 | No.1(8)

XML based Safe and Scalable Multi-Agent Development Framewor k
Rinkg Goyal,Pravin Chandra,Y ogesh Singh
GGS Indraprastha University Kshmere Gate Delhi-6 (INDIA)

Abstract:

In this paper we describe our effortsto design and Implement an Agent devel opment
framework that has the potential to scale to the size of any underlying network suitable
for various E-Commerce activities. The main novelty In our framework Is It's capability to
allow the development of sophisticated, secured agents which are simple enough to be
practical.

We have adopted FIPA agent platform reference Model as backbone for
Implementation along with XML for agent Communication and Java Cryptographic
Extension and architecture to realize the security of communication Information between
agents.

The advantage of our architecture Is Its support of agents development In different
languages and Communicating with each other using a more open standard |.e. XML

Keywords. Agent, Agent Development Framework, Agent Coordination, Security

[. INTRODUCTION

Agents can understand user's goals and carry out actions autonomously to fulfill those
goals[1,2] Mobile agents are programs that can migrate from host to host in a network, at times and
to places of their own choosing. The mobile agent concept grows out of three earlier technologies:
process migration, remote evaluation, and mobile objects—all developed to improve on remote
procedure calling (RPC) for distributed programming [6]. Agents are an effective choice for the
development of applications in distributed systems, for severa reasons, including improvements
in latency and bandwidth of client-server applications and reducing vulnerability to network
disconnection. Although not al applications will need mobile agents, many other applications will
find mobile agents the most effective, basically mobile agents find their utilities in three different
domains. Oneis data-intensive applications where the data is remotely located, is owned by remote
service provider, and the user has specialized needs. Here the user sends an agent to the server
storing the data. The second domain is where agents are launched by an appliance and third is for
extensible servers, where a user can ship and install an agent representing him more permanently
on aremote server[4].

Research Institutes as well as companies develop high-quality prototype systems for
mobile systems, a brief summary isgiven in Table nol yet, these systems typically

Satisfy not al requirement of mobile agents for a full environment [3]. As given in the table
few frameworks support Knowledge query and manipulation language (KQML) based agent
communication, in KQML the major drawback is a lack of standardization in the actual transport
of messages [16]. In addition, the semantics of the language have not been rigorously defined, which
can lead to interoperability issues. Further, as the semantic web emerges, it is likely that web
based agents will communicate with each other using a more open standard. In few frameworksii.e.
open Agent Architecture [3], sometimes facilitator itself becomes a communication bottleneck, or a
critical point of failure.

SNo. |Harre Developers L sisuaees MaiorApplicationAreas

12 |JADE Telecomltalialab, Motorola|Java KQML Developing distributed nrulli agent
EETII CaniegU MellonUmversity system CHentfServer model

3 OAA SSI International Standford |C,C++,Java ,VB General Blip»! hilarmaioriretiieval

4 JATLite University Java

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006 | No.1(8)

56 |MADKIT |URMM PraJHtIXTA JVIft Used in Grapkcal Interface Multi
AISLAND Fytbn Java Script Docume nt Interface
78 |MAST CAI Fernandez C++TIPA- Coordination of W Agent
AGILE ACITX Java, FIPA-ACL |Collal oration and interactive vital
environment
910 |Ajanta Minnesota UnivEcily lavalava General Purpose Internet
Aglet

Table 1. Comparative Study of various Existing Framework

This paper describes a framework in which various agents can be developed and deployed
further an agent hierarchy can be maintained to facilitate an agent to accomplish its goal.

The rest of paper is organized as follows: Section 2 introduces the key issues in the
selection of implementation language. Section 3 describes the architecture of Framework. Section 4
demonstrates the development of various agents. Section 5 implements the agent hierarchy and
Appendix describes that how the new agents can be developed on this framework. Finaly we make
conclusions of Developed System

[1.SELECTION OF IMPLEMENTATION LANGUAGE

Java along with Java Cryptographic Architecture and Extension is a natural choice for the
development of safe framework because of its Multiplatform support, write once, run-anywhere
policy and the ubiquity of the Java virtual machine may someday facilitate dissemination of
mobile agents throughout the Internet.

It is the language of choice for many multi-agent systems i.e. Concordia, Odyssey, and Voyager,
[14, 15].

The JCE framework in the Java 2 SDK, v 1.4 and in JCE 1.2.2) includes an ability to enforce
restrictions regarding the cryptographic algorithms and maximum cryptographic strengths
available to applications in different jurisdiction contexts (locations) The Java Cryptography
Architecture (JCA) provides extensible architecture to manage keys. This architecture is embodied
in java security as a KeyStore. The Java KeyStore follows the existing JCA architecture which
provides aframework and implementations for a KeyStore

To construct a safe infrastructure public and private key pairsis required. These unique key pair
combinations provide the facility to sign and encrypt data in an authenticated, verifiable, and
secure fashion. Public keys are typically stored in certificate objects, rather than alone. Sender and
receiver may deal with many certificates and may have more than one private key that they use to
sign and encrypt or decrypt data. We reveal an important vault of information in Java security, the
KeyStore, which allows agents to consolidate and manage their various certificates and keys.

A KeyStore is a database of private keys and their associated certificates or certificate
chains. The certificate chains aid in authenticating end entity certificates

1. ARCHITECTURE OF DEVELOPMENT FRAMEWORK

After investigating and analyzing the various implemented Agent Systems [5,14,15], it has
definitely assisted in understanding the requirements of a Framework. Our framework differs
from the other systems due to the following reasons:

1. Heterogeneity of the various agents is acceptable. Which means that the agents can be
developed in any language provided; there operation is portable with the JAVA
programming language?

2. 2.The agents thus developed are hybrid in nature thus they have both compiled as well as
interpreted codes executing on the various platforms as well asthe VM.

3. Though the Core modules have been developed in Java but the messaging architectureis
socket based, thus all other programming language having socket-based communication can
easily form apart of the environment.

4. Agent Hierarchy can be deployed using special XML based Agent property files.

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006 | No.1(8)

The basic architecture is given in Fig 1. And its integral components are explained in the
following sub-sections

s ok Miotfornn

[&1]
R i s

4 1Rl
L T P R Y BT R
T TERT
é‘ L 4

| Security Policies

Agent Registry

COMMMUNICATION
Agent Server — Agentin Server
"l’
—* fgentto Agent
%1 Agen t Registering o
Registry
Operating
System Agentio Agent
Messaging
!é | Security Policies |
é/' n ‘\é\
¥ &‘
iAgent |Agent| Moot E.A.gcnti_Agenl:'!Agi:nti Agcnt| Agclnl..iigl:nt!

Agent Platf o SgenT Platform Agent Placforn

Messaglng MMossoging rMeossaging
L [Ta L RN Bl v cares Sl e

Dperss birgg Dperating Dporaling
Shyteim S TErTY Sy ram

Figure 1: Gereric Developmert Pladtrm overmesr

A. Platform design

It provides the basic architecture for messaging between the various agents. Its registry feature
predominantly helps the agent location and tracking process. It consists of the following
components.
Global Server: The Global Server isresponsible for the following actions.
* Itregistersall the active agentsin aglobal agent registry.
* |t shares the registry information with al the other active middleware's for easy routing of

messages.

The global registry keeps track of the identification and current location of the agents. The

registry stores the agent Id's and the Location Details of the various agents.

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006 | No.1(8)

Agents: The agents, who execute on the client side comes under this category. These agents
areto design in a Prescribed

Format so that they can be easily loaded into the runtime environment.

Clients: The user interfaces connected to the runtime platform as well as the various other
agents comes under this category.

Messaging Middleware: This forms the core of the inter agent Communication between the
various agents. The messaging middleware is Responsible for the routing of the messages across
the various client nodes in the Generic Platform network.

B. Client
Client is adso cdled the active distributed component of the system. It provides al the

messaging support (through Client Middleware or messaging Middleware). The major
components of the client are -:
* Messaging Middleware
* Loca Agent Registry
» Communication engine
 Agents

Local agent registry: Registry forms the backbone of the agent information service by
providing and maintaining the details of the location of all the active agents. It has the following
components

1 Agent name: A unique name that identifies each agent.
2. Physical address: The network address where the agent is located.

Messaging Scheme: The message has following components
1 Agent Name: Unique name/ number identifying agent.
2. Message ID: Unique number identifying the message.
3. Message Type: Thetype of message that is being send.
4. Message Contents. The contents of message transmitted.

C Agent Communication

In development framework communication plays an important role for agent co-
ordination. The agents use the Message Class to create message objects. The message Class has the
constructor Message (String source, String dest, String message, int id, int type) to pass the Message
source address, the recipient address, the message content and agent id and type. All the
communication is socket based and the message transfer and coordination is controlled by the use of
M essage queue by the messaging middleware.

The message objects are passed over the TCPAP sockets, using the Object Seridizabilty and
in the encrypted form.
The receipt of the message by the various agents is an important event in the context of messaging
co-ordination and selective reception. We propose our own customized "message event” handling
for reception of messages for the agents. The proposed model is explained as under:

» All the agents register to the message event class to accept any message event, whenever
it occurs.

 Whenever amessage is received by the middleware a message event is pushed into the
java event queue, our customized message event handler handles this event.

e The agent message listener interface provides for a function called void
messageRecei ved(A gentM essageEvent) which has to be implemented by all the registered
message listeners to perform suitable action after the receipt of the message.

D .Encryption Algorithm Design in Agent Communication
To redlize the Security of communication information, public-key encryption is used to
encrypt the communication information [10, 12]. Developed agents will be interacting with

4

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006 | No.1(8)

security policy agents. Public -Private key pair will be generated by Java Cryptographic Architecture
and extension API's. Fig 2 and 3 illustrate the preparatory steps

Hash Algorithm Aendet’s
HHaAL or WIDS Priwrate K.E}\'
v Ifeszage — Digital 3ignature
Mlessage Authentication ¢ | Digita ¥ | Ciphertest .
Code Signature Ideszag:

Fig 2: Encrvotion of messages

Verify Dig 3ig with Agent
Secret Key Jerver's Fublic Key

Digital Signature Mlessage Authentication ———— Compate
¥ Zode (W) i

Cipher text
P " Ieszage

Meszage T |TuT)

Hash Algorithin

Fie & ;. Decrvotion of messaces

IV.VARIOUSAGENTSDEVELOPED:

Indexing agent: The indexing agent facilities the work of search and file agent by providing a
ready index of files that can be searched. The search gets speeded up as already index of filesis
there, it prepares an index of files that user wishes to share on network and Provides support for the
faster search for Search Agent.

Search agent: Search Agent uses the results provided by Indexing Agent thus showing the
hierarchal approach of the Generic Deployment Framework architecture developed, it Initiate a
search on the network through the messaging service provided by Framework for search initiation,
monitoring and result acquisition. It Helps the File Agent to know whereabouts of a required file.
Functioning isillustrated in Fig 4

Tnvoke: or asks for
™ e <

Search agend Indesng agent

P
-

4 Indexof fes for
shared vver setwork

A

Message conprising

of search rasuls

¥

BMowage for sownh

O —

Middlewars
Tdesrams s .

Tdessage —
Sesrchresuls

AL PRSP

forwarding

Fig 4: Search Agent

5

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006 | No.1(8)

File agent: File Agent is build over the hierarchy of agents and uses the functionality provided

by the agents over which it is build. It Uses search agent to retrieve the list of files available on
the network and

Allows the user to get files interactively by using the messaging scheme of Framework
architecture to initiate a peer connection for the file transfer. Functioning isillustrated in Fig 5

MiddleWare Messages MiddleWare
k._,/‘ N
Tvokess
Invokers i
network . e
- Results search
ararch received ’ ugnils

through A
l messages

Tavoks Sramts a

sodce s file
poaxr Sreach Agenl Beanuh Agend warster

connzotion session

rasults requests
fle

File
fransmission

Fide dgont

File Agent

USER 1 ‘lﬂxle ?ramﬁer agent L?m-g USER 2
other agents and messages
to zey files over the peer 1o
peer network

Fig 5: File Agent

A. Agent Hierarchy

Agents can build over a hierarchal model where agents depend over other agents for the

functionality. The information of the dependency is stored in an XML document as an example
XML below shows. XML can aso contain optional agents.

- G o
Document : calcagent.xml
Created on @ March 17, 2004, 11:54 PH
Author poroet
Description:
Purpose of the documont folliows.
o
- Sagent™

<jarmame valae="calcagent jar"/>
<classname value="com agent calcagent CalculatorAgent"/>
“depends-on agent-name="xyz'/>
<depends-on agent-name="abc'/>

<fagent>

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006 | No.1(8)

A tree depicting the hierarchy of the dependency of the agentsis build whenever an agent is
run. The loader builds a tree according to which the agents are loaded and this allows an agent,
which is on the top of hierarchy to use the services provided by other agents for performing its
activities.

V. CONCLUSION

Our Framework differs from many of the avallable agent framework because of its
simplicity and small size. This system is inspired by Aglet, Odyssey, Concordia [14] [15] and
JATLite and support FIPA standards. Customized Messaging Scheme and XML based
architecture helps in agent communication as well as coordination, the custom agents like file
search and transfer agents have been developed and Appendix has been provided for the users who
wish to design their own custom agents. As with other agent development models, this model also
has scope of future extension like the inclusion of better failure management, management of
network congestion etc.

APPENDIX: CREATION OF NEW AGENTS:

A. Steps to Build a Sample Agent

Agent's name plays an important role in the developed framework as the agent platform loads
the agent by its name. Also name of the agent is sent in the message. So, it is necessary to stick to
a particular name for an agent al the time. All agents are assumed to be in a package SCADE.agent.
This adlows us a consistent packaging scheme which allows us an easier way to manage java docs.

1. Create a public class by name Hello Agent that is the core of the hello agent class. Inherit all the
features from the SCADE.bin.agents.Agent class (This class provides basic agent functionalities).
Also, the agent class implements the AgentMessageL istener and Runnable interface which makes
agent threaded and also capable to use existing platform to listen to messages. packages
javalang.reflect, packages need to be imported.

The sample codeto create classis

package SCADE.agent.helloagent;

import SCADE.bin.messaging.*;

import SCADE.bin.gui.*;
public class HelloAgent extends SCADE.bin.agents.Agent implements
SCADE.bin.messaging.AgentM essageL istener, Runnable {

2. Implement the methods provided by the interfaces

public class HelloAgent extends SCADE.bin.agents.Agent implements
SCADE.bin.messaging.AgentM essagel istener,
Runnabl e{

public void messageReceived (AgentM essageEvent evt) {

}:
public void run () {
v }

}

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006 | No.1(8)

3. Select aunique agent Id for your agent that has not been used. Open the
SCADE\bin\agents\Agent.java file and check for the last used agent Id. Add anew id for your agent
as...

public static final int HELLO_AGENT = 7 ;(supposing last used id was 6)

In the message received function a core of three types of messages need to be handled. (Other types
of messages are handled if your require them).

For new message add the message type to the interface SCA DE\bin\messaging\M essageType.java.
Add ainteger message id which is not previously used.

public static final int MESSAGE_HELLO_AGENT = 22; (considering last message id was 21).
Following M essages need to be handled in Message received function

1. AGENT_GUI_INITIATE: This message corresponds to the event that the user has used the GUI
to start the agent.

2. INITIATE_TASK: This corresponds to message from another system to initiate an agent.
3. TASK_RESULT: This corresponds to message that result is send to the agent.

Whenever the GUI will initiate the agent it will send a AGENT_GUI_MESSAGE to the agent at its
system. Considering, our helloagent will be using AGENT_GUI_INITIATE and INITIATE_TASK
messages. If the system GUI initiates the helloagent then it broadcasts message to all the systemsiit

knows.

/I code to check Message type and Agent ID of the message send from the message.
Message m = evt.getMessage ();

/I m is message object retrieved from AgentM essageEvent Object evt

if (m.getDestAgentld == super.getAgentld & & m.getM essageType ==

MessageType. AGENT_GUI_INITIATE) {

/I broadcasts message to all the systems

/[create a new message

Message m1 = new Message (“source address’, “ destination address’, null, super.getAgentid,
MessageType AGENT_MIDDLEWARE_BROADCAST, super.getAgentld);

Il source address (system ip address as string that sends message)

/I destination address (for broadcasts set dest address to source address as it gets replaced)
/I message payload (here null)

Il source agent id (id of the sending agent)

/IMessage type (Broadcast message)

//destination agent id (id of destined agents) super.sendM essage (m1);

//sends the message to middleware

}

/[Handling of INITIATE_TASK message

Elseif (m.getDestAgentld == super.getAgentld & &

m.getM essageType == MessageType.INITIATE_TASK) {

/I code to write hello

SCADE.bin.gui.mdgui.j TextAreal.append (“Hello from” + m.getSourceAddress);
/I A text areaj TextAreal provided to all the agents for appending there data

}

//In the run method send a message to the system to initiate

agent and message type AGENT_GUI_INITIATE

8

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006 | No.1(8)

public void run () {
Message m1 = new Message (“source address”, “dest address’, “helloagent”, super.getAgentld,
MessageType AGENT_GUI_INITIATE, super.getAgentld);

super.sendMessage (m1);
}
REFERENCES
1. Foner L., What is an agent anyway? : A Sociological Case Study, MIT Media Lab, Cambridge, MA,

10.

11.

12.

13.

14.

15.

16.

1993
Russel Stuart & Norvig Peter, Artificia Intelligence: A Modern Approach, Prentice Hall, 1995

Alter Brenner, Rudiger Zarnekow and Hartmut Wittig “Intelligent Software Agents: Foundation and
Applications’ Springer 1998

Caglayan Alper & Harrison Calin “Agent a Sourcebook: A Complete Guide to Desktop, Internet, and
Intranet Agents’. John Wiley & Sons, Inc. 1998

Tecuci Gheorghe “Building Intelligent Agents. An Apprenticeship Multi strategy Learning Theory,
Methodology, Tool and Case Studies.” Academic Press. 1998

David Wong, N. P., Dana Moore "Java-Based Mobile Agents." Communication Of The ACM March
1999/Val. 42 No. 3.

Chunsheng Li, Chenggi Zhang, "MA-IDS Architecture for Distributed Intrusion Detection using Mobile
Agent." Proceedings of the Second international conference on Information Technology for application
(ICITA) 2004.

Haetmut Vogler, T. K., Marie-Louise Moschgath "An Approach for mobile Agent Security and Fault
Tolerance using Distributed Transactions." |EEE. Transaction 1997

Dragana Cvetkovie, Milja Pesic, Degjan Petkovie, Veljko Milutinovie, Petar kocovie and Vlada
Kovacevie "Architecture of the Mobile Environment for Intelligent Genetic Search and Proxy Caching.”
|EEE. Transaction 2002

Qiang XUE,Jizhou SUN,Zunce WEI " TJIDS:. an intrusion Detection Architecture for dikstributed
Network” IEEE Transaction 2003

Shad-chun Zhong, Qing-Feng Song, Xiao-Chun chang ,Yan Zhang ” A safe Mobile Agent system For
distributed Intrusion and Detection” IEEE Transaction 2003

Guy G. Helmer, J. S. K. W., Vasant Honavar, Les Miller, Yanxin Wang "Lightweight Agent for
Intrusion Detection." Thejournal of Systems and software 2002

Timon c.du,Eldon Y.Li,An-Pin chang Mobile Agents in Distributed Network Management”
Communications of the ACM july 2003/Vol 46 No 7.

Odyssey white paper. General Magic Corp., Cupertino, Calif., 1998. Voyager white paper. ObjectSpace
Corp., Dallas, Tex., 1998.

Deepika Chauhan, JAFMAS: A Java-based Agent Framework for Multi agent Systems Devel opment and
Implementation, ECECS Department, University of Cincinnati, 1997

Finin T, Peng Y and Labrou Y. (1999) Agent Communication Languages: The current Landscape. |EEE
Intelligent Systems, March/April 1999, pages 45-52.

Articlereceived; 2005-12-16

