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Abstract
In this paper we consider problems of fuzzy measure restoration from corresponding
insufficient data on the finite set. An approach is located in the class of Choquet’s second
order capacities with nearest distance from λ -additive fuzzy measures, when the singleton’s
“ fuzzy weights”  are known. This essentially concerns certain frequency distributions, where
the feature of additivity  is doubtful. This follows from the fuzzy nature of data distribution,
when the expert “ appoints”  data. This fact is an indisputable condition of fuzzy measure
introduction, but insufficient for its construction.

Fuzzy measure of the optimal approximation is constructed in the class of Choquet’s
second order capacities. Measures of specificity, indices of uncertainty and estimations of
approximations are calculated.

Some properties of the correctness of the approximation are proved.

INTRODUCTION
There are two classical approaches to data analysis. If experimental data is “sufficiently”  exact then for

their processing and estimation of general characteristics probabilistic-statistical methods can be used. If data
is presented with sufficient “ inaccuracy” , then for their study the methods of theory of errors will be used.
But there are cases when both methods of statistics and the theory of errors do not give satisfactory results.

When data is presented by intervals and their description is “vague”  and characterized by overlapping and
the receipt of data the expert is and in the intervened, it is clear that the nature of data are combined: parallel
to probabilistic-statistical uncertainty there exists the possibilistic uncertainty, guarantees more or less
adequate results.

 Fuzzy statistics play an essential part in probability-possibility analysis and they are used very effectively
in fuzzy expert decision-making systems. Non-additive but monotone measures (fuzzy measures) were first
used in fuzzy statistics in 80S by M. Sugeno [3].

  We consider problems of fuzzy measure restoration from corresponding insufficient data (the third
section).

In [4] there is presented a problem of construction of the distance on fuzzy measures, which is reduced to
the distance between probabilistic measures in the class of associated probabilities. This is the problem,
considered in the second section. There are considered basic definitions with needed commentaries in the
second section.

In the fourth section there is constructed the concrete example and its table interpretation.

1. PRELIMINARY CONCEPTS

Let }x,...,x,x{X n21= is the finite reference set, (X)B -algebra of all subsets of X, g-fuzzy measure

(X)B in Sugeno’s sense and g)(X),(X,B -fuzzy measure space [3]

.1o  Fuzzy measure λ−>λ∈λ is)1(]1,0[g (X)B -additive fuzzy measure [2] if for

,BA(X),B,A ∅=∩∈∀ B
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.2o   Dual fuzzy measures (X)10 B],[g,g * ∈  are called respectively lower and upper Choquet’s second order

capacities [1], [6] if (X)B∈∀ B,A :

),B(g)A(g)BA(g)BA(g

),B(g)A(g)BA(g)BA(g
**** +≤∪+∩

+≥∪+∩

where )A(g)A(g* −= 1  (duality). Choquet’s second order capacities are enough broad class of fuzzy

measures. For example, λ -additive fuzzy measure λg  is Choquet’s second order capacity. It is easy

verifiable that )/(
* gg λ+λ−λ = 1 . Let n,...,,i},g{and}g{

*

ii 21=
∧∧

 denote “ fuzzy weights”  of singletons

for *g,g  dual fuzzy measures respectively.

.3o    For each nS))n(),...,(),(( ∈σσσ=σ 21  permutation of the finite set { 1,2,…,n}  the probability

functions [1], [8]:
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are called the associated probabilities to the fuzzy measure g, where nS  is the permutations group of all

natural number from 1 to n. It is proved [1] that if (X)10 B],[g,g * ∈  are dual fuzzy measures then they have
common associated probabilities class:

nn SS )}(P{)}(P{ ∈σσ∈σσ ⋅=⋅ and )(P)(P:S *
*n ⋅=⋅∈σ∀ σσ ,

where *σ  is dual permutation of  )n,...,,i),in()i(( * 211 =+−σ=σσ .

    By (2) and (4) we may write down associated probabilities class for λ -additive fuzzy measure λg .
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where )(i;S;n,...,,i n σ∈σ= 21  is the location of ix  in σ  permutation. (If 1=σ )(i  than ∏ ≡
=

0

1
1

j
).

.4o  Introduce the following notations. (X)10 Bm ],[X ⊂)( -fuzzy measures on )( Xc(X); mB -Choquet’s

second order capacities on λ−)( X�(X); mB additive fuzzy measures on )(X(X); RB -probability

measures on (X)B . It is clear

 )(⊂)(⊂)(⊂)( XXXX mmmR c
� . We know [1] that if )(∈ Xg cm  then XA ⊆∀

)A(Pmax)A(g),A(Pmin)A(g
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.5o  Let }m,...,,i,y/R)y,...,y,y{(T i
m

m
m 21021 =≥∈≡ . Let f be a function +→ RT:f m . f is called a

function generatrix of distance, if the following five properties are satisfied:
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  (2)  )z,...,z,z(f)y,...,y,y(fi,zy mmii 2121 ≤�∀≤ . f is monotone non-decreasing,

  (3) )z,...,z,z(f)y,...,y,y(f)zy,...,zy,zy(f mmmm 21212211 +≤+++ . f is sub additive,

  (4) y)y,...,y,y(f = . f  is idempotent,

  (5) m)m()()( S),y,...,y,y(f ∈σ∀σσσ 21 . f  is symmetric.

   We rank the m!n ≡  permutations of nS  with some criterion to number them, and thus to represent the

class 
nS)}(P{ ∈σσ ⋅ as an n!-tuple )P,...,P,P( m21 . Let d be some distance on )( XR  [4]. It is proved [4] that

the function +�)(×)( RXX mm:D  defined as
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.6o    Given )(∈ Xmg . The probability measure )(∈ XPg R  is called nearest from fuzzy measure g if
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g )(∈
=

R

It is known [1] that if )(∈ XRP  then associated probabilities class contains single probability

distribution nS,PP ∈σ≡ σ . So the problem of minimizing may be reduced to the problem of minimizing the

function D with respect to P:
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ig ) 0g  is probability measure then 0D2 ≡ . This distance is called a degree of

unspecific [4].

.7o    For given )(∈ Xg m
)}Pl,g(D),Bel,g(Dmin{)g(C *

00=
is called an induce of specificity [4], where 0Bel  and 0Pl  are dual fuzzy measures of the beliefe and

plausibility of whole ignorance. XA ⊆∀
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If 0)g(C ≈λ  then λg  is near to  0Bel  or 0Pl  and λg  hasn’ t the specificity. If  0c >>  then λg has a
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2. THE PROBLEM OF FUZZY MEASURE RESTORING
In practice  the  subjective expert data is often performed only for singleton factors, because any

measurements of multifactorial variants practically don’ t exist. For example: if four 432,1 x,x,xx  factors

(symptoms) act on the illness y then by some expert (doctor) may be performed frequency distribution table
(table1), where some “weights”  are subjectively “appointed”  but pair “ fuzzy weights”  almost don’ t exists.

    Here we offer the method which restores dual fuzzy measures dual fuzzy measures )g,g( *  with best

approach to )(X�m  from )( XB  in the sense of distance 2D  though with complimented condition. Let it is
only known “ fuzzy weights”  of singletons:

10 <≡<
∧

})x({gg ii  , n,...,2,1i = .

Let

}n,...,,i,g})x({g/)Xg{g,...,g,g,X iin 2121 ==(∈=)(
∧∧∧∧

mm
is the class of fuzzy measures of )(Xm  with coinciding values of measures on singletons.
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TABLE 1

1}x,x,x,x{

?}x,x,x{

?}x,x,x{

?}x,x,x{

?}x,x,x{

?}x,x{

?}x,x{

?}x,x{

?}x,x{

?}x,x{

?}x,x{

subj2.0}x{

4.0}x{

subj3.0}x{

2.0}x{

g}x,x,x,x{XA

4321

431

321

432

421

43

42

32

41

31

21

4

3

*)
2

1

4321=⊆

TABLE1: insufficient expert frequency distribution of some illness with respect only to 4 symptoms in terms
of the fuzzy measure g
 * ) Data with notion “subj”  is appointed by the expert.
Analogously
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is the class of second order Choquet’s capacities with the same property and
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Let },...,,{L l21 λλλ≡  is the set of real roots of the polinom (13) ( 1−>λ ).

Let ∅≠L . Introduce the following short notations:
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DEFINITION 1: ( ∧�g , *g∧� ) pair fuzzy measures are called 
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-additive fuzzy approximation to n1,...,i,g i =
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insufficient expert data.

DEFINITION 2: 	
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PROPOSITION 1: Probability approximation corresponds to dual fuzzy approximation measures and
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PROPOSITION 2: The probability approximation pair is equal probability measures.
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λ -fuzzy measure *
*g,g ∧∧

λλ
 are nearest to probability measures in the sense of distance 2D . Thus only

probability distribution corresponds to the case *
*gg PP.
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==λ 0  ),(D),(D
** LL
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    In reality insufficient (similar to table 1) Data of dual fuzzy measures may be not single, but given by
some experts }I,...,I,I{E E21X = .

DEFINITION 3:  Data X
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 (defined as (12)) are called insufficient expert data of the

fuzzy measure g given by experts XE .

    Insufficient expert data produce x
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∧
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DEFINITION 5: Pair fuzzy measures defined as :XA ⊆∀
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fuzzy measures.
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There variants of optimal approximations, which are received  from insufficient data of unknown fuzzy
measure g, perform their “ restored”  faces. For comparison we consider the example where fuzzy measure g,
will be known, We’ ll restore them their “ fuzzy weights”  of single sets (insufficient data) and estimate errors.

3. THE EXAMPLE

Consider one example when fuzzy dual measures ( *g,g ) are known (case for one expert). Let

}x,x,x{X 321=  and dual fuzzy measure *gg ≤  are “almost”  uniform probability measures (table2),

TABLE2

but their associated probabilities class are
given in table 2’

TABLE 2’

σ )x(P )1(σσ )x(P )2(σσ )x(P )3(σσ
x(P )1(

*
σσ )x(P )2(

*
σσ )x(P )3(

*
σσ

1,2,3 41 125 31 31 31 31
1,3,2 41 125 31 31 31 31
2,1,3 31 31 31 31 31 31
2,3,1 31 31 31 31 125 41
3,1,2 31 31 31 31 31 31
3,2,1 31 31 31 31 125 41

The equation (13) has the following face:

0008334.0)7(27.0)7(02.0 2 =−λ+λ

from where 0299280.=λ=λ
∧

. Then 029058301 .)/(* −=λ+λ−=λ
∧∧

. 0299280.gg =∧
λ

,  0299280.
* gg

∧
= ; the

associated probabilities class of g  is performed in table 3:

TABLE 3

σ )x(P )1(σσ )x(P )2(σσ )x(P )3(σσ

1,2,3 0.25 0.3360771 0.4139229

}x,x,x{XA 321=⊆ g *g

∅ 0 0

}x{ 1 41 31

}x{ 2 31 31

}x{ 3 31 31

}x,x{ 21 32 32

}x,x{ 31 32 32

}x,x{ 32 32 41

}x,x,x{ 321
0 0
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1,3,2 0.25 0.3360771 0.4139229
2,1,3 0.3333333 0.2527458 0.4139229
2,3,1 0.3333333 0.3366473 0.3300194
3,1,2 0.3333333 0.2527438 0.4139229
3,2,1 0.3333333 0.3366473 0.3300194

We’ ll set distribution table of fuzzy measures ** g,g,g,g  with errors (table 4): (here ** gg,gg == )

TABLE 4
}x,x,x{XA 321=⊆ 0299084.0gg = )A(g)A(ggg 0290583.0

* −= − )A(g)A(g ** −

}x{ 1 41 0.3300185 0.0000185

}x{ 2
0.3333333 0.4139569∼0 ~0.0806

}x{ 3
0.3333333 0.4139569∼0 0.0806

}x,x{ 21
0.5860771 0.6666678         0.0805 ~0.0000078

}x,x{ 31
0.5960771 0.6666678         0.0805 0.00000078

}x,x{ 32
0.6699806 0.7500764     0.003319 0.0000764

}x,x,x{ 321
1≈ 0≈ 0≈

The first approach optimal approximation error is

0108278.0)g,g(D)g,g(D **
22 == .

For setting *g~,g~  we have one expert, therefore g~  and *g~  are probability measures and

0299280.
*

*
g

*

gg Pg~PPg~ ====
∧
λ

∧
λ

 of which distribution is (table 5):

TABLE 5:
Pσ )x(P 1 )x(P 2 )x(P 3

0.2775876 0.3612063 0.3612061

but the distribution table with errors is (table 6):

TABLE 6:
XA ⊆

029928.0g
* Pgg == )A(g~)A(g − )A(g~)A(g ** −

}x{ 1
0.25 0 0.08

}x{ 2
0.31 0.02 0.02

}x{ 3
0.42 0.09 0.09

}x,x{ 21
0.56 0.1 0.1

}x,x{ 31
0.67 0.01 0.01

}x,x{ 32
0.73 0.07 0.07

}x,x,x{ 321
1 0 0

The zero approach optimal approximation error is

0046453.0)g~,g(D)g~,g(D **
22 ==
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    As calculations shows (tables 2-6) estimations given by the approximations are enough “high” , maintain
precisions of approaches. The zero approach optimal approximation is more exact than first one, because here

fuzzy measures )g,g( *  are “near”  or “similar”  with probability measure and given by one expert.
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