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The Optimal Control Problem for the Second Order Ordinary Differential
Equation with Integral Boundary Condition and Quadratic Functional

M. Zangaladze
Computer Software and Informational Technologies Chair, Iv. Javakhishvili Tbilisi State University

Abstract
In this paper the optimal control problem for the second order ordinary differential
equation with non-local boundary conditions is considered. The necessary and
sufficient condition for optimality has been obtained.

INTRODUCTION
Many processes in practice are controlled and it is important to find the optimal resolution for their

realization. Besides, while mathematical modeling physical, biological and ecological processes we obtain
non-local boundary problems.

Creado, Meladze and Odisehlidze considered the optimal control problem [1] for Helmholtz equation
with Bitsadze-Samarski’s type non-local boundary conditions [2] and quadratic functional. In the present
paper is considered the optimal control problem for the second order ordinary differential equation with
another type of non-locality – integral boundary conditions [3].

1. STATEMENT OF THE PROBLEM

Let V  be an open subset of R  and Ω  be a set of control functions: ])1,0([,]1,0[: 2LvVv ∈→ ,V is called
domain of controls.

Let us consider following problem for each fixed Ω∈v  in ]1,0[  interval:
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where constqLfLaRx =<∈∈∈∈ ∞ 0]),1,0([]),1,0([,,],1,0[ 2βα . It is known, that the solution of

problem (1) exists, is unique and belongs to space ])1,0([2
2W  [6].

Let )(vI  be the following quadratic functional:
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where ])1,0([, 21 ∞∈ Lbb  are given functions.

Now let’s state the following  optimal control problem: find the function Ω∈0v , whose corresponding

solution of problem (1) together with v0  results in the minimal  functional value.

2. ADJOINT EQUATION
To obtain conditions of optimality we follow the scheme developed in the works [4][5].
Assume, that Ω∈0v  is an optimal control, Ω∈εv  is arbitrary admissible control and εuu ,0  are

corresponding solutions of problem (1). Let’s take the following notations:
,~

0vvv −≡ ε      .~
0uuu −≡ ε

If  we’ ll consider problem (1) correspondingly to ),( 00 vu  and ),( εε vu ,then we come to the following problem

for u~ :

(1)

(2)

(3)
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For a certain 0v  and εv  let us consider the following difference:
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Let ])1,0([2
2W∈ψ  and 0≠ψ . If we  multiply (4) on ψ , then integrate obtained expression on the interval

[0,1] and take into account (5) equality, we shall have:
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     (6)

Let us make the folowing transformation for constructing the adjoint equation: two times using partially
integration formula and fact that 0)0(~ =u , the first member of equation (6) will transform into following:
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Integrating (4) equation in [0,1] interval we obtain:
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Placing (8) equation in (7) expression, we shall have:
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Replacing (6) into (9) we shall see, that if 0ψ  is the solution of the following problem:

�
�
�

�

��
�

�

�

=
=

∈−=+

,0)1('

     ),1()0(

),1,0(),()(2)(
)(

012

2

ψ
ψψ

ψψ
xxuxbxq

dx

xd

then functional I
~

 expressed in (6) will be as follows:
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THEOREM 1: Let   0>= constq  and  ]),([W)x(u]),,([L)x(b 1010 2
21 ∈∈ ∞  are given functions,

then the solution of the problem (10) exisis, is unique, belongs to space ])1,0([2
2W  and could be written as

follows:
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And  0c  and  1c  are defined as follows:
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3. NECESSARY AND SIFFICIENT CONDISION FOR OPTIMALITY OF SOLUTION
THEOREM 2. Let functional be given by the formula (2), 0)(2 >xb  and 0ψ is solution of the problem (10),

then  the couple ),( 00 vu is optimal  if, and only if, the following condition is  satisfied:

( ) 0)()(2)()()1( 0200 =+− xvxbxaxψψ
almost everywhere in the [0,1] interval.

The confirmation of this theorem is the same as in [1] ,where the confirmation of necessary and sufficient
condition for optimal control problem with another type of non-locality is presented.

4.CONCEQUENCE
Let’s consider the following optimal control problem:
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where [ ]( )1;00]),1,0([]),1,0([,,],1,0[ 2 ∞∞ ∈<∈∈∈∈ LqLfLaRx βα . It is known, that the solution of

problem (1) exists, is unique and belongs to space ])1,0([2
2W  [6].

Let )(vI  be the following quadratic functional:

(12)
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where ])1,0([, 21 ∞∈ Lbb  are given functions and ( )vu,  searched couple, satisfy (12) and will assign minimal
value to (12) functional.

Above considered problem will transform to the following system:
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The adjoint problem of  (12)-(13) problem is corrected and also the already received necessary and
sufficient condition of optimality is truthful for it.
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