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Abstract
The technology of design of two-point boundary value problems for ordinary
differential equations, containing also boundary layer effects is elaborated. The
proposed methods essentially refine and enlarge a class of algorithms for solving
aforesaid problems. From these methods there follow also classical methods, including
methods of Collatz, Henrici, Marchuk, Schr�der, Tikhonov-Samarskii, finite elements
and exponential fitted methods. Then the program part is realized in the form of
package of applied programs consisting of control program and modules. For fulfilling
this work we followed the manual [Ben-Israel A., Gilbert R.P.]  with its software that was
kindly given to us by Gilbert. Some parts of this technology are systematically
inculcated in teaching processes and not only in the basic courses and also in student’s
course and diploma works at Iv. Javakhishvili Tbilisi State University, Vekua Institute
of Applied Mathematics, University of Delaware. Is created the program package on
Turbo Pascal 7.0 for solving the boundary value problems for the second order
ordinary linear differential equations (fourth issue).

The contents of the report besides the scientific side present an effective manual,
realizing purposes, which are stipulated in teaching processes for high school and in
practice.

INTRODUCTION
A purpose of the present paper is to suggest a new technology of design of a class of boundary

value problems (BVPs) for the second order ordinary differential equations, introduced in
educational processes of a number of universities. We will present here also the manuscript-manual
as the enlarged version of this report, using essentially the structure of the books [2,6,12].

We note also, that a class of studied BVPs, presented below is chosen for an illustration of the
methodology, however, a more general case is considered in [22,24,25].

Let us consider BVPs for the second order non-linear ordinary differential equations
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The problems connected with our technology of design are studied for the following subclasses of
BVPs (1)-(2):

1.Picard-Banach type conditions are satisfied; 2.The maximum pronciple is fulfilled.
These subclasses of BVPs, having uniqueness solutions, are important for practice also. This

problem of solvability is studied, in particular, in [3,16,17,19,20] and [1,3,5,6,10,11]
correspondingly.

We note, that for constructiong Tikhonov-Samarskii schemes [18] it is necessary to compute
multiply integrals while by the works of Volkov [28] for getting p -th  order ( 2>p ) of exactness
with respect to h  of  three-point schemes it is necessary to compute the derivatives of 2−p  order
from the given data of BVP (1)-(2).

(1)

(2)



Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2005 | No.2(6)

34

1. BVPS OF THE PICARD-BANACH TYPE
 For this class the numerical methods, presented, for instance, in the works [3,17], are usually

supported on a construction of a difference analogue of the Green function and the solution is found
using the fixed-point theorem. The corresponding iterative scheme has the form:
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where N/h 1=  is a step of the mesh, ikg  are values of the discrete Green function, ),(l i βα  are

corresponding functionals, satisfying the boundary conditions (2), )m(
iy  are values of te unknown

function y  in ix -mesh point on the m-th iteration. An exactness if schemes according to [3,17]

have second order, if the iteration process (3) is convergent and of ],[Cy 104∈ . From the
expression (3) it evidently follows that for constucting approximate solution it is necessary to do

NlnN 2  arithmetical operations (as is well known that Nln operations is the number of
iterations).

In the works of Vashakmadze [19,20] there are considered problems of numerical solutions of the
Picard-Banach type subclasses of BVPs. The remainder terms of the corresponding schemes are

)N(O p 2+− , if )p(] ,,[Cy p 410 ≥∈ . For 4=p  the result with respect to an order of convergence is
similar to those of classical methods [3,17], but the order of an arithmetic operations is minimal

NlnN . This order for an estimate of arithmetical formulae are presented in details in [19,20,23]
or in the aforesaid manuscript.

2. BVPS SATISFYING THE MAXIMUM PRINCIPLE
The constructions of an approximate solution of this subclass by the finite-difference or

varational-difference (i.e., Finite Elemet) methods represents classical part of numerical analysis and
are studied, for example, in [1,3,5,6,7,10,11,13,14,16,28, etc]. If for the most of these works the
coresspondingly schemes have the second order of accuracy, in the monographs having the fourth
order of approximation are also investigated.

We remind that for this subclass satisfying the maximum principle the following conditions are
true: the function f  is independent of 'y  and 0≥∂∂= y/ff y  are fulfiled.

In the most well known manuals referenced above this case is investigated, when the left hand side
is approximated by the three-point scheme or the veriational difference method, giving the three
point template. As is known these schemes have the second order of exactness on h , if

),(Cy 104∈ or the fourth order with respect to h , if the unknown function )x(y  is continuously
differentiable up to the sixth order. For the linear BVPs, when 1≡)x(k , are investigated in [18,28]
the three-point schemes of the high degree of exactness for this subclass. In the works of
Vashakmadze [19-21,22], when initial BVPs are linear and the weight )x(k  is a positive
differentiable function on ),( 10 , the corresponding schemes are constructed by the special class of
spline-finctions named as (P) and (Q) formulae, different from the correspoinding systems of the
coordinate functions constructed in [4,9,13,15,etc]. (P) and (Q) formulae have also an arbitrary order
of exactness depending on the smoothness of )x(y  and requiring neither calculating the multiply
integrals, nor computing derivatives from the given data of initial BVPs (1)-(2) unlike works
[18,28]. For non-linear problems in case ε−π≤ 2

yf  the Belman-Kalaba iterative scheme [1,25] is

applied. The suggested schemes for 2=p  coincide with the results of Henrichi [10].
In [26], when BVPs (1)-(2) is linear with constk =  small positive parameter, using (P) and (Q)

formulae, we investigated this problem. At first we considered this problem with a view of the
theory of differential equations, according to the work of Viskik and Lusternik [27]. Then we
constructed high accuracy multi-point schemes, created the corresponding software and did the
numerical experiments. The process of comparision with methods from the monograph of Doolan,

(3)
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Miller and Schilders [7] had been done. The scheme of [26] is also true in a more general case, when
)x(k 1−  non-negative function is integrable with (2) boundary conditions, using data of [21,25].

3. DESCRIPTION OF PROGRAMM COMPLEXES
There is created the programm package, written in the programming language Turbo Pascal 7.0

for the resolution of the second order ordinary differential equations.
The programm modules are written on the base of new, high accuracy algorithms developed in

[19], [21], [23] or [25] and are intended to solve the following problems:
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with boundary conditions (2), where )x(y  is unknown function and

)),x(y,x(f),x(f),x(q ))x('y),x(y,x(f satisfy conditiones given in [25], ε  is a small positive
parameter.

Package consists of five units, each of them separately solving  (a), (b), (c), (d) and (e) problems
and one main program, called MAIN.PAS, which enables choice of which problem is  to be solved.

Each module uses the program, written by T. Zarqua, for reading the function from screen and
counting its value in requested value of arguments. Thus, it is possible to enter the prescribed

)),x(y,x(f),x(f),x(q  and ))x('y),x(y,x(f  functionsfrom the screen using the keyboard. The
unit is caleed GAMOTVLA.TPU.

The first module PROGRAM1.TPU is soving  problem (a) usinf (P) formulae from [25].
Procedure PRO1 is executing its numerical resolution.

The second module is PROGRAM2.TPU. It is counting approximate solution of the problem (b)
by means of algorithms elaborated in [25]. The main procedure is PRO2.

The third one is solving problem (c), PROGRAM3.TPU, containing procedure PRO3.
The fourth is for the resolution (d) is named PROGRAM4.TPU, procedure is PRO4.

All these units require input data: boundary conditions 0y  and 11y  values; s numbers for the
calculation of boundary knots, k ,n - number of points, tt  number of knots for the calculation of
approximate value of integrals in formula for ijb  and ijc  coefficients ([25]); Output is value of

approximate solution ks,..,i] ,i[y 221= .
The fifth program module PROGRAM5.TPU is solving (e) problem, the main procedure is

MP_MET MP-Met calls the procedures LIJ, BIJ, FUN_Q_F, AIJ, SOLSYST, GRAPHIC. LIJ
computes the Lagrange polynomials. BIJ computes coefficients ijb  as ]j,i[b . FUN_Q_F computes

)x(q  and )x(f . AIJ forms the matrice of coefficients  ija  of the multi-point method from [25]

which has a tape structure. The matrix ,n...j,i,aij 2=  is written to memory of the computer in the

rectangle form as n,..,i,s,..,j] ,j[] ^i[a 2322 =+= . Beginning with row 3+s  the elements of the
matrix are stored in memory of the computer beginning with the first column, i.e.

13 +=+=− sn,..,si,a si,i  and n,..,sni,a sn,i 222 +−=+−  will be stored it the first column. SOLSYS

solves the obtained algebraic system by the Gauss exception method. As a consequence values
n,..,i] ,i[f 20 =  are obtained. GRAPHIC constructs graphics of the obtained solution n..i] ,i[y 2=

with the boundary conditions 0y  and 1y .
The corresponding programm package represents complete, independent  product ready for users.

(a)
(b)

(c)

(d)

(e)
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