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Abstract
The idea of our work is on one of the basic problems, namely the fast calculation of the
distance between two objects. We have implemented an enhanced version of the shortest
distance routine on the basis of mathematical equations, which allows the tracking of
the distance between a pair of conics and quadrics in time that to be bounded by a
constant is expected. Experimental results confirm this result, at least for moderate
shortest distance calculation, and suggest that the enhanced algorithm might also come
in handy. Computing the distance between two objects is a common problem, using the
mathematical model of two objects, we find the point on each object such that the
distance between the objects is minimized. To do this we took care of efficient
computing, which is possible with simplifying the polynomials and their relative
coefficients. Effectiveness of computing algorithms and executing time are also
analyzed. We tested the calculation on various natural quadrics. The graphics part is
implemented in openGL and QT library is used for user interface. The execution time is
calculated by running the distance calculation routines 10,000,000 times.
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 I. INTRODUCTION
During last decade an increasing interest in virtual reality (VR) technique could be observed.

Virtual reality plays a highly important part in the actual reality as can be send from movies and
other scientific application (i.e. Education), and VR based industries.

However, the ‘classical’  challenges that come when deal with the complex objects in VR world,
simulating their physical behavior.
Robustness and efficiency of such a simulation heavily depend on the quality of the collision
Detection precisely distance computation algorithm. They identify the earliest time of the closest
distance of two objects in a given time interval. However, one has to consider that there is a trade-
off between the accuracy of the approximation and the efficiency of the distance computation. In
this paper we present an efficient algorithm for computing the distance between so-called ‘quadratic
complexes’ . We reduce the distance calculation problem to the problem of solving univariate
polynomial equations. We implemented on OpenGL and QT to check the practical approach to this
idea and succeeded in having productive results. Reducing the high degree polynomials was indeed
a challenging task, keeping in mind the approximation not affecting the quality of results. Our
considerations therefore raise the question, whether or not it is worth to handle curved objects
directly. It means that one has to spend more effort on the basic routines computing the distance
between two patches, but can profit from higher accuracy and simplified quadratic equations to
compute the closest.
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Computing the distance between two objects is a common problem, using the mathematical
model of two objects, we find the point on each object such that the distance between the objects is
minimized. To do this we took care of efficient computing, which is possible with simplifying the
polynomials and their relative coefficients. Details of computing algorithms and executing time are
discussed in the following section.

 II. OUR ALGORITHM
A. Simple Cases

We started with the simpler cases and proceeded to gradually more complex situations.
Simpler cases are dealt with ease since there polynomial equations are simpler too. We adopted

the methods for simpler cases by [1]. The cases are as follows:

1. Point to Line
2. Point to Circle
3. Point to Ellipsoid
4. Point to Ellipse
5. Line to Circle
6. Line to Line

A slightly different case is of Line to Sphere, which is not as hard as is thought. It is just the
extended case of line to point.

B. Complex Cases
In this section we will discuss the cases of distance of different objects with a cone. Here we have

assumed that the cone is centered at origin along Z -axis. Given the general equation of this cone
below:
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We know from the general equation of conics:
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by using Lagrange formulation:
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By minimizing the function and simplifying we get:
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C. Point to cone
Eq (1) is the degree 4 polynomial in �  for the case of distance between cone and point.

The nearest point on cone can be calculated by:

pIAx )( += α  - - - - - - - - Eq (2)

 where I is the identity matrix and p is the point.

Now considering the special case of cone, i.e circular cone:
From Eq (2) we have:
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where A1 =A2 =B and b=di for i=1 and 2, which is the degree 2 polynomial in � .

D. Line to Cone
Line is represented as:

tuc)t(p +=
where c is some point on the line and u is the direction vector.
From Lagrange formulation, by minimizing and simplifying the function we get:
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Considering special case of cone i.e. circular cone, we get:
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With this we can easily express that:
deg(ƒ, t) = 2
deg(ƒ, � ) = 4
deg(g, t) = 1
deg(g, � ) = 2

E. Circle to Cone
Circle is represented in parametric form:

))v)(sin()u)((cos(rc)t(P φ+φ+=  - - -- - - Eq 3
where:
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Solving g for �
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Substituting b and d3 in f´ we get:
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where h(t) is a polynomial of degree 4 in t.

Substituting t in Eq. 2 gives point on a circle. Substituting t in Eq. 3 gives the value of � , which
can be used in Eq. 1 to calculate the point on cone.

F. Solving the polynomials
Routines from Silvia [2] (Simulation Library for Virtual Reality and Interactive Applications)

libraries are used to solve the polynomials.

The degree four or less polynomials were solved using the routines:
SolveQuadric (coeffs, roots)
SolveQuartic (coeffs, roots)

The routine returns the number of real roots of the polynomial whose coefficients are given in
"coeffs" and the real roots are in "roots". For polynomials of degree higher than 4, the following
routine is used:

real_roots1(coeffs, degree, roots)

where:
coeffs = coefficients of the polynomials
degree = degree of polynomial
roots = roots calculated by the routine.
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The routine returns the number of real roots of the polynomial.

G. Execution Times
The execution time is calculated by running the distance calculation routines 10,000,000 times to

have substantial reading and avoid micro measurements. The time depends on the following factors:
• Degree of polynomial
• Complexity of coefficient calculation

S# Objects Time (seconds)
1 Point – Line 25
2 Point – Circle 28
3 Point – Ellipsoid 800
4 Point - Ellipse 62
5 Point – Sphere 14
6 Point – Circular Cone 117
7 Point – Cylinder 205
8 Point – Cone 126
9 Line – Circle 415
10 Line - Sphere 37
11 Line – Circular Cone 119
12 Line – Cone 221
13 Circle - Circle 1764
14 Circle - Sphere 42
15 Circle – Circular Cone 1330
16 Circular Cone- Circular Cone 472

 III. CONCLUSION

The degrees of the resulting polynomials are usually high and hence elimination methods are
often not appropriate in the context of floating-point computations. However, we could show that
for all cases in which the degrees of the resulting polynomials become critical, a factorization into
two lower degree polynomials can be found.
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