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Abstract
This paper discusses Blind Source Recovery (BSR) of  mixtures of multiple

source distributions represented by state space equations using an adaptive score
function. The proposed parametric score function is derived from the generalized
gamma distribution model. An adaptive algorithm to determine the parameters for the
proposed score function using mutual information of BSR output is also presented. The
primary advantage of the proposed framework is that it renders the adaptive estimation
of the demixing network to be completely blind. No a priori information about the
distribution structure of the original sources is required. Simulation example verifying
the proposed framework is also presented.

Keywords: Blind Source Recovery, Blind Source Deconvolution, Blind Signal
Equalization, Generalized Gamma Function, Kurtosis.

1. Introduction

Blind Source Recovery (BSR) is an interesting autonomous (or unsupervised) stochastic
adaptation problem that includes well-known adaptive signal processing problems of multi-channel
Blind Source Separation (BSS), Deconvolution (BSD) and Equalization (BSE) with several
potential applications [2,3,6]. The BSR problem denotes recovering original sources from
environments that may include convolution, transients, and even possible nonlinearity. The
performance of BSR algorithms strongly depends on the choice of an appropriate score function
which appears as an element wise acting non-linearity on the output signals [2-6]. For a particular
problem, the optimal score function depends on the distribution of the original source signals which
are unknown in a blind scenario. In such cases, unless some assumptions about the distribution of
the sources are made, any BSR algorithm will potentially be unable to deliver the desired
performance. Therefore, adaptive estimation of appropriate score functions is very attractive from a
practical implementation viewpoint. The proposed score function was applied to BSR in a state
space framework. The state space notion provides a compact representation, capable of handling
both time delayed and filtered versions of signals in an organized manner [2,3,6]. Unlike the
transfer function models of standard dynamic filters, the use of the state-space can result in several
generalized, equivalent and efficient internal descriptions of a system. This allows for recovery of
original sources independent from  environment identifiability, i.e. determining the exact (or a
specific function of) parameters of the environment. There are many adaptive network solutions
(representations), which succeed in recovering the original signals even in the absence of precise
identifiability, termed as recoverability [2,6]. Existence and constructions of a theoretical solution
to the BSR problem can be easily derived using the state space, given a structure of the environment
[1,6]. Most of the mixtures encountered in practical BSR problems are  from sources with a variety
of non-gaussian distributions. On the other hand, most noise phenomena or unidentified sources are
assumed to possess gaussian distributions. This results in practical situations, where one has to cope
with multiple source distribution mixtures including gamma distributions. We describe the use of
the proposed adaptive score function in the linear convolutive class of state space BSR . This paper
includes seven sections. In Sec.2 we expose generalized gamma probability density function and its
characteristics. The third section show how to use the state space approach in multichannel blind
deconvolution. Section four contain the performance function, gradient-based rules and the
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derivation of an adaptive score function for generalized gamma. Section five contain simulation
results, environmental model and demixing Network structure. Section six contain conclusions.
Section seven represent references.

2. Generalized Gamma Probability Density Function

The generalized gamma function is a three-parameter distribution. One version of the
generalized gamma distribution uses the parameters θβ andk, . The pdf for this form of the
generalized gamma distribution is given by, �
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where θ > 0 is a scale parameter, β > 0 and k> 0 are shape parameters and Γ(x) is the gamma
function of x, which is defined by,
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With this version of the distribution, however, convergence problems arise which severely limit its
usefulness. Even with data sets containing 200 or more data points, the maximum likelihood
estimation(MLE) methods may fail to converge. Further adding to the confusion is the fact that
distributions with widely different values θβ andk, may appear almost identical. In order to
overcome these difficulties, Weibull++ uses a “ reparameterization”  with parameters

λσµ and, where,
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Where - ∞< µ< ∞, σ> 0 and - ∞< λ< ∞.
While this makes the distribution converge much more easily in computations, it does not facilitate
manual manipulation of the equation. The pdf of the reparameterized distribution is given by:
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2.1. Characteristics of the Generalized Gamma

As mentioned previously, the generalized gamma distribution includes other distributions as
special cases based on the values of the parameters.
 

Figure 1. Some members of Generalized Gamma Distribution Family

• If λ= 1 The Weibull distribution is a special when
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In this case the generalized distribution has the same behavior as the Weibull for σ > 1, σ = 1 and
σ < 1 ( β < 1, β = 1, and β > 1 respectively).

• The exponential distribution is a special case when λ = 1 and σ = 1.
• The lognormal distribution is a special case when λ = 0.
• The gamma distribution is a special case when λ = σ .
By allowing λ  to take negative values, the generalized gamma distribution can be further extended
to include additional distributions as special cases. For example, the Frechet distribution of maxima
(also known as a reciprocal Weibull) is a special case when λ = -1.
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3. State space approach to multichannel blind deconvolution

Given a vector of observed signals u(k);  k∈ [0,N], we wish to recover the source signals s(k) based
on the assumption that the sources are statistically Independent. If we assume that the observations
are convolutive version of the sources, the problem can be tackled using state space approach [6].
We consider the state space approach instead of the transfer function approach, as the state space
approach can be easily extended to nonlinear mixing systems. Moreover, the state space approach
not only gives an efficient internal description of the dynamic systems, but also there exist different
possible equivalent state space realizations, for instance, canonical controller form [6] which allows
us to find “efficient”  representations of the demixer. We model the mixing environment of the
MBD problem as follows:

)()()()1( kLksBkxAkx pξ++=+         (6)

)()()()( kksDkxCku θ++=            (7)

where dRkx ∈)(  is the state vector of the system, nRks ∈)(  is the vector of unknown source

signals( assuming that they are zero-mean, I.I.D. and spatially independent), mRku ∈)(  is an

available vector of sensor signals, dxdRA ∈  is a state matrix, dxnRB ∈  is an input mixing

matrix, mxdRC ∈  is an output mixing matrix, mxnRD ∈ is an input-output mixing matrix and
dxdRL ∈  is a noise matrix. The integer d is called the state dimension or system order.

 Correspondingly, we model the demixer using a similar discrete time dynamical system:

(k)L Bu(k)  Ax(k)  1) x(k Rξ++=+ � ��������(8)
Du(k)  Cx(k)  y(k) +=         (9)

where MRkx ∈)(  is the state vector of the separating system and the unknown state-space

matrices have dimensions: ,,,, mxnMxnmxMMxM RDRCRBRA ∈∈∈∈ with dM ≥ . Here

we assume both the mixer and the demixer exist, in particular, D-1 exists. The condition of the
existence of solution in multichannel blind deconvolution is studied in [6].

4. Performance function

We measure the dependence among the recovered sources y using mutual information. Given P(y),
the probability density function (PDF) of the recovered signal vector y, the mutual information
between the recovered signals can be defined as follows:
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Figure2. General linear state space model for blind deconvolution
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where  ]E[log(P(y)-  H(y) = is the entropy of y, )]([log()( qq ypEyH −=  is the marginal entropy of

qy . For simplicity, for the remaining part of this paper, the time index k is dropped if there is no

risk of confusion. Observe that I(y) = 0 if and only if the components of vector y are statistically
independent. Therefore I(y) is an appropriate measurement of the dependence among the recovered
signals. Unfortunately, mutual information is difficult to compute explicitly, hence we use a cost
function similar to [6]:
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where θ is the set of system parameters and source model parameters, which we will study in
Section 4.2, det is the determinant. There exist various ways to tackle the optimization problem [6].
Here we follow the derivation of information back-propagation approach .

4.1. Gradient-based learning rules

Based on the cost function (12), we can easily obtain the following updating rules. For matrices
∆ and

DDuyIkkDkD TT ))()(()()1( ϕη −+=+                           (13)
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 where )(yϕ �is a vector nonlinearity related to the source model. This will be discussed further in

Section 4.2. Note, natural gradient [1] is used in (13,14) to improve the performance of the learning
process. Similarly, for matrices Α and B, we have:
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where liδ is the Kronecker delta function.

4.2. Derivation of an Adaptive Score Function for generalized gamma

Due to the very parameterized nature of the generalized gamma family and its ability to model
a variety of source densities of interest to blind source recovery, we derive a generalized score
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function (nonlinearity) based on this family. This generalized score function inherits a nice
parametric structure from its paramterized parent density.
The element-wise nonlinear score function required for the BSR problem has the definition [3,4,5,6]
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where iy , i=1,…,n- represent the ith output of the network,  )( ii yp  represent the statistical

probability density function of the ith output . Using the generalized gamma family as the candidate
density function we have
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where an appropriate choice of σµλ ,, makes the nonlinearity suitable to a particular source
distribution.

5. Simulation Results

In this section, we  present simulation results for the non-minimum phase FIR filtering
environment with state space representation equivalent to the FIR model mixing environment. The
demixing system is formulated as a state-pace network [2,3,5]. In all presented simulations, the
source signals are chosen to possess different  distributions, respectively; the score function is
adapted online along with the BSR algorithm. The convergence performance of the algorithm is
measured using the multi-channel intersymbol interference (MISI) benchmark. MISI is a measure
of the global transfer function diagonalization and permutation as achieved by the demixing
network and is defined as
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Where G(z)-Global Transfer Function given by

(z)H*H(z)G(z) =                                                   (28)
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H(z)=[A, B, C, D]-Transfer Function of Network

5. 1. Environment Model

This environment is assumed to be a 3×2 IIR filter
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Figure 2. Global transfer function

Figure 3.Estimated Demixing Network by BSR
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Figure 4. multi-channel intersymbol interference (MISI) benchmark

5.2. Demixing Network Structure

The theoretical inverse of this FIR mixing environment will be a 3× 2 IIR matrix filter with
each element having both numerator and denominator polynomials of degree 12. For both the
feedforward and the feedback demixing cases, matrix C can be initialized with very small random
numbers or all zero elements, while the matrix D is chosen to be an identity matrix. The number of
taps per filter was chosen to be 30.

6. Conclusions

We have proposed an adaptive score function for BSR algorithms based on the Generalized
Gamma density model. Further we presented a method to adapt this score function online. This
adaptive scheme for determination of a score function suited to an unknown source model has been
extensively tested for  convolutive mixing. A simulation example has also been presented and it is
observed that the proposed framework can recover sources from a complex convolutive mixture
efficiently even when all the sources have different probability structure.
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