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Abstract :

We present a survey by a finite elements bidimensional code, of the bifurcation (of
Hoph) of the Couette-Taylor flow in spiral waves. This transition appears in the
survey of the Couette-Taylor problem whose equations are governed by those of
incompressible Navier-Stokes. Remarks on the effect of the temporal discritization
and the numerical integration are also presented.
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1 Mathematical modelling of the problem of couette-Taylor

One designates by Ry and Ry (R; < Ry) radiuses of two coaxial cylinders in uniform rotation
and by w; and w, their respective angular speed. In all the following, we are going to cut down
to the case of the couette bifurcation in Spiral waves. What is the case if wiws < 0 with |ws|
big enough [1, 1986].

1.1 Equations of the out-flow

The domain (2 is defined in cylindrical coordinates by :

Q=1{(r,0,2) with Ry <r <Ry, § € S'=R/(2rZ) and z € R} (1)
Equations that govern the out-flow are those of Navier-Stokes
v 1
9V — - A 2
with the condition of incompressibility
V.o =0 (3)

Conditions to limits of adhesion to the partition take the shape

{ ((u,v,w):(O,l,O) inr=1 (@)

u,v,w) = (0,aw,0) inr=a

with @ = £2 and w = 2. The parameters a and w as the geometric parameters, the Reynolds
Ry w1

number Re = (R3w;/v) as the dynamical parameter.
NB : We reduced the number of parameters by a choice of scale, while defining the adime-
sional quantities

t
r=R7Z, t=—, p=pRiupetv=RwD
w1

and we suppressed bars on x,t,p and v.
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2 Axial periodicity.

The hypothesis of an infinite length device not being realist, one considered a device of h height
and one imposes conditions to the periodic limits in the axial direction in z = +(h/2). In fact,
this hypothesis introduces an ” axial wave number ”

a=k—

h
where, k is an integer, and we will look for solutions that are invariant by translations (
Z— z+ %r ) along of the axis. One defines, then the ” domain” of periodicity by

}

Q,={(r,0,2) with1 <r <a, § €S"and o<

«

el

A solution of adimensional equations (3) — (4) is the one of couette

B
Ve = (0,v,,0) with v, = v.(r) = Ar(1 + 7"_2) for r € [1,q]

a?(1—w)
a?w—1

20—
where A = “af_ll and B =

. The pressure is defined by

2

P—P()—C+A2(r2+231 (r) B)
e T = 2 OBV T o

2.1 Symmetries and equivariances of the problem.

One notes GL(2) the linear group of order 2, and by O(2) the orthogonal group of order 2
0(2) = {R € GL(2) as R'R =' RR = I}

SO(2) designates the plane rotation group

s0@ = (ko= ( Gnfy) o) ) asoe sty

According to the independence of mechanics laws in relation to the reference system. Our
system is invariant by

e translations the long of the oz axis, i.e. by 7: 2+— 2+s5, s € R
e reflexion symmetry in relation to the xoy plane i.e. by S : 2z +— —z
e and rotations around oz i.e. Ry: 60— 0+ ¢, ¢ € S*.

Under the hypothesis of the axial periodicity, one shows that the group of symmetries of the
problem (2) — (4) is isomorphous to the group I' = O(2) x SO(2). However, the different
observed states are more invariant by the action of the initial symmetry group I' = O(2) x
SO(2). So, with the following definition A vectorial space £ on which operated a group G,
the subgroup of isotropie of a vector x € E' is

{v € G tel que .o =z}

The subgroup of isotropie Y. of the out-flow of Couette is I' = O(2) x SO(2), and the one of
the out-flow in spirals is ¥g = SO(2).
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2.2 Reduction of the couette bifurcation in spiral waves to a bidi-
mensional problem.

One defines the number of wave azimuthal m as being the smallest integer such as Rz V =V

Since the spiral waves possess the symmetry SO(2), it is therefore at a time a rotary wave
around oz and a wave of translation the long of oz. If one notes by w the frequency of this

21

out-flow (for a rotary wave of 7', w = =7), one has
(V,q) = (V(r,mb + az + wt), (q(r,ml + az + wt))

While putting ¢ = mf + az + wt, one gets

mﬁ—2 Ozg—gandwi—2
o6 09’ op 0z op Ot
SO 5 5
m
96~ a0z )

Thus, the spiral wave problem amounts to a bidimensional problem i.e. that equations of
Navier-Stokes, to calculate this type of out-flow are gotten in

Q, ={(r,z) with r € [1,a] and z € [—

I}

JE
JB

from (2) — (4) while taking account of the relation (5).

3 Methods and numerical results.

3.1 Finite elements methods.
3.1.1 Variational formulation

To get variational formulation associated to the problem of out-flow, one introduces bilinear

shapes

o, v) Riw(u), D), u,ve H'(Q)

e
where D(.,.) is the tensor rate of distortion and

b(U,Q) = _(q7 d’iU(’U)), (VS Hl(Q) and q e LQ(Q)
and the trilinear form
c(u,v,w) = (w.v)v,w), u,v,we H'(Q)

The problem partner to the bidimensional out-flow models consists in determining, in the
domain of periodicity,

Qr =Q x [0, T]
where T' > 0 and (2 is defined by (1), the vectorial function u and the scalar function p solutions
of the problem (2) — (4) of which a variational formulation is given by

searching v € H*(Q) and p € L3(Q) with v — @ € H} ()

(2,v) + a(u,v) + c(u, u,v) + b(v,p) =0 (6)
b(u,q) =0 for all g € L3(Q)

u(z,0) = up(x) forall x € Q

10
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3.1.2 Discretisation

e Discretisation in time: The bifurcation of the couette in spiral waves is an instationnar
out-flow, we discretize % by a diagram of Gear of constant step time (an implicit diagram
to two steps and of order two)

ou  3u™tt — 4y 4yt

ot 2Nt

e Discretisation in space: One discretize in space while replacing H'(Q) by V;,, H}(Q2) and
L3(Q2) by Qp. These approximations must satisfy a condition of compatibility inf — sup

or of Brezzi-Babuska
. b(u, q)
38 > 0 such as inf sup——— > [
a€Qnuevi, |qo l|ully

The retained element for our survey is the Qo — P;. It satisfies the condition inf —sup and
possessed a precision of the second order [5, 1981] i.e. if (u,p) is a solution to our problem,
one has evaluations of errors

{ lu = wnll 1) < c1h?

||p - ph||L2(Q) < 02h2

Vi, and @y, form some conform approximations of H'(2) and of L?(Q2) and one considered the
associated discreet problem to (6).

3.1.3 Algorithms of resolution

o Treatment of the nonlinear term: Newton method

e Treatment of the linear term: all linear systems are solved by the factorization LDU of
the global matrix stocked under shape of profile.

e Algorithm of Uzawa generalized: One considered the condition of incompressibility like a
linear constraint (that one will Penalize strongly) on the speed. The pressure appearing
then like a Lagrange multiplier.

e Methods of Simultaneous Inverse Iterations: This method is used to calculate the smallest
eigenvalue of a matrix A of large size. It permits to transform a problem of eigenvalues
of big dimension in a problem of distinctly more reduced dimension. One shows that the
convergence is improved if one uses ¢ vectors with ¢ > p. A good choice |2, 1976] seems
to be ¢ = min(2p, p + 8). The test of convergence only carries on p eigenvalues.

To determine the first eigenvalue that will cross the imaginary axis, it agrees to couple the
method of Simultaneous Inverse Iterations to the algorithm of Uzawa-generalized.

3.2 Numerical results.

After some tests on the couette out-flow, we opted for a regular maillage 10 x 10 resulting in:
1323 degrees of liberty and 1140 unknown.

11
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Figure 1 : It’s indicates geometry and boundary conditions :
(1) for Dirichlet knots, and (2) for periodic and free knots.

3.2.1 Effect of the utilization of a squareness method

If one uses a finite element ()5 — P; to solve equations of Navier-stokes in Cartesian coordinates,
the method of squareness of Gauss to 3 points by direction is adequate (recall that in Cartesian
coordinates and for a rectangle, the method of squareness of Gauss to 4 points by direction
is exact because the jacobien of the transformation is constant). However, the expression of
equations of Navier-Stokes in cylindrical coordinates introduced a factor % what makes that
the method of squareness of Gauss to 4 points by direction does not integrated more precisely
(even in a rectangle) a bilinear term (D(u), D(v)) where D(.) is tensor rate of distortion.

3.2.2 Determination of points of bifurcation

While using the linear theory of the stability, the Principle of stability exchange and the type of
bifurcation, we show (for more details see [4, 1991]) that the bifurcation of the couette out-flow
in spiral waves is a bifurcation of Hoph. Thus, the critical Reynolds number corresponds to a
pair conjugated of eigenvalues that cross the imaginary axis. To determine this even eigenvalue,
we opted for a method of simultaneous inverse iterations. The numerical results for different
values of a = g—f and of w = i—f show that the critical number of Reynolds Re. corresponds
to a number of wave azimuthal m # 0 and the eigenvalue corresponding o is imaginary pure
confirming so the nature of the bifurcation (a bifurcation of Hoph). Besides, our results agree
very well with those of [3, 1984] and of [8, 1988]. The relative difference between the critical

Reynolds numbers hardly passes them .1% [4, 1991].
3.2.3 Determination of the spiral wave branch
We are going to restrict to the case

a=1.3300, w=-0.6, m=1and a=10.98

which corresponds to oy = wgi = 0.346 and to Re. ~ 366.5. To determine a point of the spiral
wave branch for a number of Reynolds Re;, Re; > Re., one takes for initial solution

Uy = Ue + EV

with 0.01 < e < 0.1, u, is the solution of couette and v is the corresponding vector to the
critical eigenvector. The figure 2 represent the signal of the radial component U, in function to

12
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Figure 2.1 et 2.2

n= ﬁ, A(t) = .1 at the point P3 for R, = R., and R, = 370. Tt shows that if the number of
points of Gauss by direction is equal to 4, the perturbation is absorbed in less a period of time
and one gets the solution of couette even though one repeated the procedure with a number
of Reynolds Re, Re > Re,. If now, one uses a Method of squareness of Gauss with 5 points by
direction, the perturbution gotten from a critical eigenvector is not absorbed anymore. Figure
3 represent in projection (r,z) the space of the vector current and equipotential lines of the

current out-flow in spiral waves for numbers of Reynolds Re ~ 366.50 and Re = 390.

3.2.4 Evolution of the out-flow in spiral waves.

According to the dynamical system theory, it is necessary, to have more information on the
evolution of the out-flow, to use the signal of the speed and the bidimensional phase portrait,
it consists in drawing the graph of u(¢ + 7) according to u(t) where 7 is an arbitrary constant;
a” good 7 approximation of 7 |7, 1987] and [, 1991] is T'/4. The figure 4 represents the sig-
nal in P3 of the radial component and its phase portrait of the speed for Reynolds numbers
Re = Re. = 366.50 and Re = 390. They show that our numerical model, with a diagram
of Gear to treat the derivative in relation to the time, confirm the simple periodicity of the
out-flow in spiral waves.

Conclusion :

In this work, we presented a finite bidimensional elements code that permitted us to simulate
the transition of the couette out-flow toward the out-flow in spiral waves (a solution instation-
nar and no-axisymetric). The reduction of the problem of couette-Taylor to a bidimensional
problem has been made from subgroups of isotropic solution. The localization of points of
bifurcation searched for, that amounts to the calculation of the eigenvalues of the tangent
matrix, has been simplified considerably thanks to the identification of the bifurcation type in
reason and made by a method of Simultaneous Inverse Iterations. We put in evidence the uti-
lization of an implicit diagram of order 2 in time and the necessity of a very precise numerical
integration. We showed the validity of our code while showing that the gotten results agree
with the applied observations and other numerical results existing in the literature. As, we
had, at the time of the transition of the couette out-flow toward the out-flow in spiral waves,
difficulties with the numeric integration, it agrees to be careful at the time of a simulation of
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Figure 3.1 : Current vector and lines for Re = 366, t = 100 = A(t), A(t)

o
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Figure 3.3 : Current vector and lines for Re = 390, t = 200 * A(t), A(t) = .1
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Figure 4.1 : Radial component for Re = Re., Figure 4.2 : Phase portrait for Re = Re,
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Figure 4.3 : Radial component for Re = 390, Figure 4.4 : Phase portrait for Re = 390
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all tridimensional out-flow. The survey of the stability and transitions of the out-flow of Taylor
and/or of the out-flow in spiral waves requires a tridimensional formulation. We think that
the analysis that we developed can adjust to the case 3 — D.
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