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Abstract:

New trends in communication, in particular the deployment of multicast and real-time
Audio/Video streaming applications, Internet Telephony etc. is likely to increase the
percentage of non-TCP traffic in the Internet. These applications use RTP over UDP
and rarely perform congestion control in a TCP-friendly manner; they do not share the
available bandwidth fairly with applications built on TCP, such as Web browsers, FTP,
or e-mail clients. The Internet community strongly fears that the current evolution could
lead to congestion collapse and starvation of TCP traffic. For this reason, TCP-friendly
protocols are being developed that behave fairly with respect to coexistent TCP flows. In
this paper, we present the implementation, simulation and evaluation of a simplified
transport layer protocol that we have devised. From the results obtained let me conclude
that it is suitable for applications that use variable packet sizes but transmit at a
constant rate (packets per second) like VolP. Also, the protocol responds constructively
to network congestion and is a TCP-Friendly. We have used ns-2 tool support for this

paper [1].
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1. Introduction

Most traffic in the internet uses TCP-based protocols such as Hypertext Transfer Protocol (HTTP),
Simple Mail Transfer Protocol (SMTP), or File Transfer Protocol (FTP). However, the number of
audio/video streaming applications such as Internet audio players, IP telephony, videoconferencing,
and similar types of rea-time applications is constantly growing, and it is feared that one
consequence will be an increase in the percentage of non-TCP traffic. Since these applications
commonly do not integrate TCP-compatible congestion control mechanisms, they treat the
competing TCP flows in an unfair manner. Upon encountering congestion, all contending TCP
flows reduce their data rates in an attempt to dissolve the congestion, while the non-TCP flows
continue to send at their origina rate. This highly unfair situation can lead to starvation of TCP
traffic, or even to a congestion collapse, which describes the undesirable situation where the
available bandwidth in a network is amost exclusively occupied by packets that are discarded
because of congestion before they reach their destinations [2],[3].

2. TCP Friendliness
In [1], non-TCP flows are defined as TCP-friendly when “their long-term throughput does not
exceed the throughput of a conformant TCP connection under the same conditions.”

TCP Friendliness for Unicast — A unicast flow is considered TCP-friendly when it does
not reduce the long-term throughput of any coexistent TCP flow more than another TCP flow on the
same path would under the same network conditions.

With the above definition, TCP friendliness ensures that coexisting TCP flows are not
treated unfairly by non-TCP flows. Note, however, that this does not necessarily mean that all TCP
and TCP-friendly flows on a bottleneck link receive the same throughput. Even competing flows
that use only TCP for congestion control will often not receive the same amount of bandwidth. For
example, TCP flows with different RTTs or different numbers of bottlenecks nodes will transmit at
different rates [4].

37



Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|N0.3(10)

3. Classification Schemesfor TCP-friendly behavior

3.1 Window-Based vs. Rate-Based

One possible classification criterion for TCP-friendly schemes is whether they adapt their offered
network load based on a congestion window or on their transmission rate. Algorithms that belong to
the window-based category use a congestion window at the sender or at the receiver(s) to ensure
TCP friendliness. Similar to TCP, each transmitted packet consumes one slot in the congestion
window, while each received packet or the acknowledgment of areceived packet frees one slot. The
sender is allowed to transmit

packets only when a free dlot is available. The size of the congestion window is increased in the
absence of congestion indications and decreased when congestion occurs.

Rate-based congestion control achieves TCP friendliness by dynamically adapting the
transmission rate according to some network feedback mechanism that indicates congestion. It can
be subdivided into simple AIMD schemes and model-based congestion control. Simple AIMD
schemes mimic the behavior of TCP congestion control. This results in a rate that displays the
typical short-term saw tooth-like behavior of TCP. This makes smple AIMD schemes unsuitable
for continuous media streams. Model-based congestion control uses a TCP model such as the one
presented in [2] instead of a TCP-like AIMD mechanism. By adapting the sending rate to the
average long-term throughput of TCP, model-based congestion control can produce much smoother
rate changes that are better suited to the aforementioned type of traffic. Such schemes do not mimic
TCP's short-term sending rate but are still TCP-friendly over longer timescales. However, the
congestion control mechanism may not resemble TCP congestion control, and great attention has to
be paid to the rate adjustment mechanism to ensure fair competition with TCP or other flows[5].

3.2 End-to-End vs. Router-Supported

Many of the proposed TCP-friendly schemes are designed for best effort IP networks that do not
provide any additional router mechanisms to support the protocols. Thus, they can readily be
deployed in today’ s Internet. These schemes are called end-to-end congestion control. They can be
further separated into sender-based and receiver-based approaches.

In sender-based approaches the sender uses information about the network congestion and
adjusts the rate or window size to achieve TCP friendliness. The receivers provide only feedback,
while the responsibility of adjusting the rate lies solely with the sender.

Receiver-driven congestion control is usually used together with the layered congestion
control approaches. Here, the receivers decide whether to subscribe or unsubscribe from additional
layers based on the congestion situation of the network. The design of congestion control protocols
and particularly fair sharing of resources can be considerably facilitated by placing intelligence in
the network (e.g., in routers or separate agents). Congestion control schemes that rely on additional
functionality in the network are called router-supported. Particularly multicast protocols can benefit
from additional network functionality such as feedback aggregation, hierarchical RTT
measurements, management of (sub) groups of receivers, or modification of the routers queuing
strategies. Generic router assist (GRA) [7], for instance, is a recent initiative that proposes general
mechanisms located at routers to assist transport control protocols, which would greatly ease the
design and implementation of effective congestion control protocols. Furthermore, end-to-end
congestion control has the disadvantage of relying on the collaboration of the end systems.
Experience in the current Internet has shown that this cannot always be assumed: greedy users or
applications may use non-TCP-friendly mechanisms to gain more bandwidth. As discussed by
Floyd and Fal in [1], some form of congestion control should be enforced by routers in order to
prevent congestion collapse. The authors present router mechanisms to identify flows that should be
regulated: for instance, when a router discovers a flow which does not exhibit TCP-friendly
behavior, the router might drop the packets of that flow with a higher probability than the packets of
TCP-friendly flows.
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While ultimately fair sharing of resources in the presence of unresponsive or non-TCP-
friendly flows can only be achieved with router support, this mechanism is difficult to deploy, since
changes to the Internet infrastructure take time and are costly in terms of money and effort [6].
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Figure 1: A classification Schemefor TCP-friendly Protocols.
4. An Overview of TFRC

TFRC is a congestion control mechanism for unicast flows operating in a best-effort Internet
environment. It is reasonably fair when competing for bandwidth with TCP flows, but has a much
lower variation of throughput over time compared with TCP, making it more suitable for
applications such as telephony or streaming media where a relatively smooth sending rate is of
Importance.

The penalty of having smoother throughput that TCP while competing fairly for bandwidth
Is that TFRC responds slower than TCP to the changes in available bandwidth. Thus TFRC should
be used only when the application has a requirement for smooth throughput, in particular, avoiding
TCP's halving of the sending rate in response to a single packet drop. For applications that simply
need to transfer as much data as possible in as short atime as possible; TCP is recommended, or if
reliability is not required, using an Additive-Increase, Multiplicative-Decrease (AIMD) congestion
control scheme with similar parameters to those used by TCP.

TFRC is designed for applications that use a fixed packet size, and vary their sending ratein
packets per second in response to congestion. Some audio applications require a fixed interval of
time between packets and vary their packet size instead of their packet rate in response to
congestion. The congestion control mechanism proposed by TFRC cannot be used by those
applications, TFRC-PS (for TFRC-Packet Size) is a variant of TFRC for applications that have a
fixed sending rate but vary their packet sizein responseto congestion.

TFRC is a receiver-based mechanism, with the calculation of the congestion control
information (i.e., the loss event rate) in the data receiver rather in the data sender. This is well-
suited to an application where the sender is a large server handling many concurrent connections,
and the receiver has more memory and CPU cycles available for computation. In addition, a
receiver-based mechanism is more suitable as a building block for multicast congestion control. A
major advantage of TFRC is that it has a relatively stable sending rate while still providing
sufficient responsiveness to compete traffic [7].
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5. Problem Statement
Current TCP-friendly congestion control mechanisms such as those used in TFRC adjust the packet
rate in order to adapt to network conditions and obtain a throughput not exceeding that of a TCP
connection operating under the same conditions. In an environment where the bottleneck resourceis
a packet processing, thisisthe correct behavior. However, if the bottleneck resource is a bandwidth,
and flows may use packets of different sizes, resource sharing then depends on packet size and is no
longer fair. Now for some applications, such as Internet telephony, it is more natural to adjust the
packet size, while keeping the packet rate as constant as possible.

TFRC-PS, that intends to provide a congestion control mechanism for VolP-like
applications, that vary their packet sizes and use a high constant rate of transmission, is still init's
incipient stages of development and is an abstract concept.

6. Goal
To devise and implement a simplified protocol that is suitable for VOIP-like applications and at the
same time responds constructively to Congestion.

7. Main Section

TFRC aready implements a sophisticated mechanism for varying the rate in order to faster a
constructive response to congestion. One possible approach would be to modify the mechanism
slightly and scale the packet sizes instead of the rate. Such an approach does not work and hereisa
brief explanation.

7.1 TFRC for Vol P-like applications

For its congestion control mechanism, TFRC directly uses a throughput equation for the allowed
sending rate as a function of the loss event rate and round-trip time. In order to compete fairly with
TCP, TFRC uses the TCP throughput equation, which roughly describes TCP's sending rate as a
function of the loss event rate, round-trip time, and packet size. We define a loss event as one or
more lost or marked packets from a window of data, where a marked packet refers to a congestion
indication from Explicit Congestion Notification (ECN) [8].

Generally speaking, TFRC's congestion control mechanism works as follows:

The receiver measures the loss event rate and feeds this information back to the sender.
The sender also uses these feedback messages to measure the round-trip time (RTT).
The loss event rate and RTT are then fed into TFRC's throughput equation, giving the
acceptable transmit rate.

The sender then adjusts its transmit rate to match the calcul ated rate.

The throughput equation is:
s
X = e
R*sgrt(2*b*p/3) + (t_RTO * (3*sgrt(3*b*p/8) * p * (1+32*p"2)))
Where:
X isthe transmit rate in bytes/second.
sisthe packet sizein bytes.
R isthe round trip time in seconds.
p is the loss event rate, between 0 and 1.0, of the number of loss events as a fraction of the
number of packets transmitted.
t RTO isthe TCP retransmission timeout value in seconds.
b isthe number of packets acknowledged by asingle TCP acknowledgement.




Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|N0.3(10)

Different TCP equations may be substituted for this equation. The requirement is that the
throughput equation be a reasonable approximation of the sending rate of TCP for conformant
TCP congestion control.

Theloss event rate, p, is calculated at the receiver, by aggregating the packets lost in aone RTT into
single loss event. For applications that transmit at a constant rate and different packet sizes, the loss
of a number of small packets in a single RTT would be aggregated into a single loss event, thus
reducing the loss event rate, p. Clearly, this causes a bias towards sending small packets at a high
rate. Thisisnot fair a al sinceit resultsin lower bandwidth utilization. Hence TFRC is not suitable
for Internet Telephony applications.

7.2 Packet-Size Scaling Protocol (PSP)

Thisis asimplified mechanism that employs a simple N-level packet scaling mechanism to respond
to congestion. Basically this protocol sets a limit on the maximum packet size for an application,
this limit is controlled by the present state of network congestion. The rate of transmission (Number
of packets per second) remains constant and is decided before the transmission begins.

7.3 Detailed Flowchart (PSP M echanism):

7.3.1 Sender Side: SeeFig. 2.
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Figure 2: PSP Mechanism: Sender Side.
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Figure 3: PSP M echanism: Receiver Side.
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7.3.3 Ack mechanism: SeeFig. 4
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Figure4: Ack mechanism.
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7.4 PSP Protocol Sequence Diagram: See Fig. 5.
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Figure 5. PSP Protocol Sequence Diagram
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8. Reaults

8.1 TCP Vs. PSP (Throughput of the Sender)

I Close || Hdcpy || About x GI'H h
Banclwidth p
outl .ty
1.5000 n outa tr
1.5000 I/

1 2000 \ [\ ol f I\\ b
VAR EPWAIEN
1.0000 V\A/ \JV /

0.8000 M M ?\X X i 1
08000 i rl\ \ ,
0.7000 X\ /\[ -

{/ \ VA AT

0.5000 I{ V

1.4000 1
ﬂ i

|

|

0.4000

0.3000 ’
0.2000 H
0.1000
0.0000 Iy

Tirne
I 0.0000 10.0000 20.0000 30.0000 40.0000 S50.0000 I

Units: L egend:
Bandwidth-mb/s PSP
Time- Seconds TCP

Figure6: TCP Vs. PSP.

The graph, found in Fig. 6, lets us conclude that PSP is in fact TCP-Friendly, because the average
throughput of the PSP sender is less than or equal to the average throughput of the TCP sender.
Also, there is a full utilization of the available resources, because at any time the sum of the
throughputs of the competing flows equals the bottleneck bandwidth.

8.2 PSP Flow (after killing the TCP-flow)
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Figure7: PSP Flow (after killing the TCP-flow)

The graph, found in Fig. 7, lets us conclude that the PSP-flow quickly achieves its fair share of the
available resources.
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8.3 Delay Variation of PSP flow (co-existing T CP-flow)

Figure 8: Delay Variation of PSP flow

Fig. 8. shows the following: the first graph plots “ End-to-End Packet Delay” Vs. “Packet Sequence
Number” for the first 1000 packets. The second graph plots “End-to-End Packet Delay” Vs. “Time”
for 9 seconds (roughly the time in which 1000 packets are sent). Sampling interval is 1.5 seconds.
These graphs let us conclude that the packet delay with PSP is suitable for VolP-like applications,
since these applications require an end-to-end delay of less than or equal to 150 ms. The delay jitter
also seems to be acceptabl e (the second graph).

8.4 Packet L oss of PSP-flow (co-existing TCP-flow)

Figure9: Packet L oss of PSP-flow
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Fig. 9. shows the following: the first graph plots a bar graph for “Packet Loss’ Vs. “Packet
Sequence Number” for the first 1000 packets. A ‘1’ on the y-axis indicates that the corresponding
packet was lost. The second graph plots “Packet Loss’ Vs. “Time” for 9 seconds (roughly the time
in which 1000 packets are sent). Sampling interval is 1.5 seconds. A 1% packet |oss in the PSP-flow
due to congestion was detected when it was operated along with a TCP-flow. Such a loss is
acceptable for Internet Telephony applications.

8.5 At aGlance
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Figure 10: These graphsdepict
1- “End-to-End Packet Delay” Vs*“Time'.
2- “Packet Loss” Vs“Time".
3- “Bandwidth ” Vs“Time’.

Fig. 10. shows the following: all the graphs are for a PSP-flow that operates alongside a TCP-flow.
The monitoring time is 9 seconds and the sampling interval is 1.5 seconds. A quick look at these
graphs let us conclude that PSP does respond constructively to congestion. PSP perceives
congestion through packet loss. Asis clear from the second and the third graphs, as the packet loss
increases, the transmission rate is reduced and as the congestion is cleared, the transmission rate

47



Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|N0.3(10)

increases. The delay is another mechanism that we have used to perceive impending congestion and
vary the rate likewise. However, this association is slightly depicted by the first and the third
graphs. Please refer to “ Detailed Flow-charts’ for an explanation of the association between “ Packet
Delay” and “ Transmission Rate”.

9. Discussion and Conclusions

PSP is TCP-Friendly
It quickly achievesitsfair share of Bandwidth.
No demands of high processing capacity at the receiver-end
It is suitable for applications that choose to maintain a high rate at the expense of reduced
packet size.
Optimum results (for particular a simulation topology) were obtained when
* PS MAX<MTU
* Constant Rate, X < (Bottleneck Bandwidth / PS_MAX)
* PS MIN=PS MAX /4
Packet |oss owing to network congestion is between 1-2%, which is good as far as VolP
applications are concerned.

10. Future Work

A connection establishment phase, in order to automatically populate the “ Preset packet-
sizes’ table and settle upon an optimum constant transmission rate. These parameters are
important in a Bandwidth limited environment to ensure afair share of resources.

Study PSP behavior with RED-PD.

The receiver sideis not immune to packet re-ordering and construes that as packet loss. One
way to rectify this might be to employ TCP-like mechanism. We declare a packet as lost if
three packets with higher sequence numbers have already arrived.

Add code to handle Ack lost scenario.

What compromises does a simplified mechanism like PSP entail ? What applications can do
away with it?
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