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Abstract:
This study introduces the modulus operation as a tool for modeling and

forecasting financial time series. The proposed method is based on the assumption that
there are signal-determined barriers for each observed signal. Whenever the signal hits
such a barrier an abrupt change occurs. The barrier and the change could be described
by a modulo operation (similar to the odometer of the car). A finite impulse response
(FIR) like filter is introduced. It is based on the concept of recurrent sequences. A
nonlinear estimation approach, the Genetic Algorithm (GA), is used to estimate the
model’s parameters. The linear recurrent sequences model is then applied to the US
Dollar / EURO exchange rate. The coefficients of the models are estimated through the
GA. The predictive results of the proposed method are shown to be more accurate than
that of a conventional AR technique.
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I. Introduction:

In modeling and forecasting time series, the most common applications in finance involve
exchange rates, share prices, and commodity prices, and in engineering involve signal analysis,
Radar imaging, Ultrasonics. Forecasting exchange rates, through signal models, appears to have
attracted the most interest in economics and financial research. A conventional method of signal
modeling is to relate, through a constant coefficient model, fundamentals, external inputs and other
relevant variables to signal movements. Such a constant coefficient model might be an
autoregressive (AR) model, an autoregressive with external inputs (ARX), an autoregressive
moving average (ARMA) model, or other enhancements of the latter two [Diebold; 1998, Rahman
et al; 1997, Harvey; 1992, Priestley; 1988, Young; 1984]. In addition, time-varying models [Chow;
1987] have also been suggested for the signal analysis, and have shown good performance
[Abutaleb and Papaioannou; 1990, Abutaleb and Papaioannou; 2000].

Furthermore, various signaling models have been proposed for modeling the behavior and
predicting the movement of stock market share prices. Among them, the most prominent ones are
the Capital Asset Pricing Model (CAPM) and the mean reversion model. In the latter tradition, as
observed in [Jegadeesh; 1990, and Lehmann; 1990], asset prices seem to obey a reversal effect, i.e.
the best performing stocks in one week or month tend to fare poorly in the following period, while
the worst performers follow up with good performance. Such an effect, however, could be
described by a (modulo p) operation. That is, the share price dynamics could be described by a
continual search for profitable trading rules, followed by destruction from overuse of those rules
found to be successful, which is then followed by more search for yet-undiscovered rules [Bodie et.
al; 1995]. This pattern may also be true for the prices of other financial assets.

The same phenomenon, modulo type operation, seems to come naturally in many
applications in bioengineering and in radar. For example, random noise is simulated through what is
known as recurrent sequences, which are nothing, but a finite impulse (FIR) filter subjected to
modulus operations. Another example is measuring instruments, which usually have a saturation
limit. This might be modeled as a threshold device or as a modulus device. In these applications, the
phase is an important quantity in the analysis of the echo of many types of signals. The phase,
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however, is limited between 0 and 360 degrees and thus it is essential to estimate the original phase
or signal from the measured modulo 2π  signal.

In this study, the exchange rate between the $US and the EURO is modeled as a linear
recurrent sequence on a finite field. When the value of the exchange rate hits a maximum or a
minimum its value is reversed. This is similar to the (modulo p) operation, where the counting starts
from zero, say, to reach the maximum value of (p-1), and then reverses itself to start from zero
again. The approach is nonlinear in nature, and is partially based on Number Theory techniques
[Abutaleb; 2001, Leveque; 1977]. The estimates of the model parameters are obtained through a
nonlinear estimation approach, the simple Genetic Algorithm [Holland; 1969, 1975, IEEE; 1994,
Michaelowitz; 1994, and Abutaleb; 1997]. The predictive results of the proposed method are found
to be superior when compared to that of a conventional AR technique. Specifically, we show that
the forecasting accuracy of the  $US/EURO exchange rate improves when we use the proposed
nonlinear approach relative to the constant coefficient method. The data used are generated data
from the IFS, end of the week $US/EURO exchange rate for the period, January 1999 to March
2001.

In section II, an outline of the conventional AR, MA, and ARMA models is presented.
Section III describes the proposed linear recurrent sequence method and the parameter estimation
using a Genetic Algorithm. In section IV, we compare the predictive results of the modulo-based
methods with that of a conventional AR model. The last section concludes by summarizing the
main results and discussing the advantages of the proposed method in modeling and forecasting
time series data.

II. The conventional Approach: AR Process
For expositional purposes, we use the exchange rate paradigm, which could also be applied

to any type of signals. When analysts are confronted with the task of short-term forecasting a
certain exchange rate or signal, they often use a set of past measurements, and a set of past relevant
variables. Hence, the objective is to predict the change in the exchange rate or signal (m+1) steps in
the future, given only information until the present time, n. Using a predictive autoregressive with
external inputs (ARX) model, one might formulate the problem as follows:
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which can be written in compact form as:
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where
n the present time
m the prediction step

iα the unknown coefficient of the change in the exchange rate or signal

at the time (n-i)
I the total number of lags for the change in the exchange rate

)( mn +φ the predicted value of the change in the signal (m+1) steps in the
future

)( in −φ the change in the signal at the time (n-i)

β
lj

the unknown coefficient of the lth variable delayed j steps
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)( jnul − the lth exogenous variable at time (n-j)

)(nε the residual or error term
L the number of independent variables
J the number of lags

Note that )( jnul −  might represent a nonlinear function of the signal.

There are many techniques to estimate the unknown parameters. A numerically stable and
accurate method is to use the regression analysis via the method of Singular Value Decomposition
(SVD) [Press et. al.; 1988]. Accordingly, one might rewrite equation (II. 2) in the following
regression format:

bXA = (II. 3)

where

] ...  ...   ... [ 21211121 LJLLI
TX βββββααα=

)]( ... )1( )([ NmImIbT φφφ +++=
with "T" being the transpose operation, and N the total number of sample periods. If matrix A has
the corresponding values, equation (II. 3) has the following solution:

( ) bAbAAAX TT #1ˆ == −
(II. 4)

Where

A
#

the pseudo inverse of the matrix A.

This constant coefficient method is efficient when the relation is linear and time-invariant. If
there is a nonlinearity or time variation in the data, this method is known not to yield the best results
[Harvey; 1992].

III. Recurrent Sequences for Data Analysis

In this section, we introduce the notion of recurrent sequences and how it could be used to
model time series data. We shall first introduce the familiar pseudorandom sequences and show that
they are applications of the notions of recurrent sequences. We then give some theoretical analysis
of recurrent sequences and the concept of a period. Finally, we introduce the simple Genetic
Algorithm as a tool to estimate the parameters of the recurrent sequence. In this analysis we will be
dealing with fields and polynomials over fields [Denning; 1982, Lidl and Niederreiter; 1997]

III. 1Pseudorandom Sequences
The notion of a random sequence of events is basic in probability theory, statisitcs,

econometrics, and signal processing.  Random sequences of bits are used frequently for simulation
purposes, for various applications in electrical engineering, and cryptography. Pseudorandom
sequences of bits are deterministic sequences of bits that pass various tests for randomness. A
commonly employed method of generating psuedorandom sequences of bits is based on the use of
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suitable linear recurrence relations in the finite field 2F . The sequences that one generates are the
maximal period sequences. One could also generate pseudorandom sequences that have elements in
the field qF , where q is an integer not necessarily a prime number. This last field, qF , is the one that

we will be dealing with.

III. 1a Maximal Period Sequence
A kth order maximal period sequence in qF  is a sequence s(0), s(1), … of elements of qF

generated by a linear recurrence relation:
)(...)2()1()( 021 nsaknsaknsakns kk ++−++−+=+ −− for n=0, 1, …

(III. 1)
for which the characterisitc polynomial, f(x), is defined as:
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is a primitive polynomial over qF  and not all initial values , s(0), …, s(k-1) are zero.

Definition of a primitive polynomial: A polynomial ][xFf q∈ of degree m>0 is called a primitive

polynomial over qF  if and only if it is monic, f(0) ≠  0, and the order of the polynomial equals

)1( −mq . The following is the definition of the order of the polynomial.

Definition of the order of a polynomial: Let ][xFf q∈ be a nonzero polynomial. If 0)0( ≠f , then

the least positive integer e for which )(xf divides )1( −ex , i.e. )(xf is a factor of )1( −ex , is called
the order of )(xf and is denoted )( ford .

A kth order maximal period sequence is periodic with least period r = 1−kq . A requirement
we have to impose is that r be very large, at least as large as the total number of pseudorandom
elements of qF  to be used in the specific application. In this way the periodicity of the sequence

which is a nonrandom feature will not come into play.

Example: Consider the linear recurring sequence, s(0), s(1), ... in 2F , i.e all the elements are 0 and
1, with:

s(n+5) = s(n+2) + s(n) for n = 0, 1, …
and initial values s(0)=s(2)=s(4)=1, and s(1)=s(3)=0.
The characteristic polynomial, f(x), is given by:

1)( 25 −−= xxxf

which is a primitive polynomial over the field 2F . Thus, this sequence is  a maximal period

sequence with least period .31121 5 =−=−= kqr
For many simulation purposes, and specially for applicatons in numerical analysis, one

needs random sequences of real numbers. These numbers should all belong to a given interval on
the real line which may be taken to be the interval [0, 1]. Again maximal period sequences in finite
fields can be used to generate sequences of uniform pseudorandom numbers. Let pF  be a finite

prime field i.e. p is prime, and let s(0), s(1), ... be a kth order maximal period sequences in pF  i.e.

the sequence elements are  < p. Then the integers have to be transformed into numbers in the
interval [0, 1]. One poplular method of doing this is the normalization method, in which one
chooses p to be a large prime and normalizes s(n) by setting

]1,0[
)(
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p
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nw for all 0≥n
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The w(0), w(1), ... is taken as a sequence of uniform pseudorandom numbers. This sequence is
periodic with least period r = 1−kp .

III. 2 Linear Recurring Sequences
Sequences whose terms depend in a simple manner on their predecessors are of importance

for a variety of applications such as time series analysis and digital filters. In this study, the focus is
on integer fields with finite number of elements. Of particular interest is the case where the terms
depend linearly on a fixed number of predecessors, resulting in linear recurring sequences. These
sequences are widely employed in coding theory, cryptography, and other areas.

Let k be a positive integer, and let 110 ,...,,, −kaaaa be given elements of a finite field qF . A

sequence s(0), s(1), … of elements of qF satisfying the relation:

ansaknsaknsakns kk +++−++−+=+ −− )(...)2()1()( 021

for   n= 0, 1, … (III. 3)
is called a kth order linear recurring sequence in qF . The terms s(0), s(1), …, s(k-1) which

determine the rest of the sequence uniquely, are referred to as the initial values. We define a
homogenous linear recurrence relation if a=0.

Ultimately periodic and periodic sequences: A linear recurring sequence is ultimately periodic
with a period r if there exists  integers  r>0 and 00 ≥n  such that s(n+r)=s(n) for all 0nn ≥ , and it is

periodic if coefficient 00 ≠a .

We now have to establish the properties of the recurrent sequence and how to find the period.

Theorem III. 1: Let qF  be any finite field and k any positive integer. Then every kth order linear

recurring sequence in qF  is ultimately periodic with least period r satisfying kqr ≤  , and

)1( −≤ q
k

r  if the sequence is homogeneous.

The period of a homogeneous  recurrent sequence, r, could be obtained by finding the value of r that
satisfies the following equation:

)()1()()( xhxxsxf r−= (III. 4)
where the characterisitc polynomial, f(x):
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with  1−=ka .

The calulation of the period r is much easier if the characteristic polynomial of the linear recurrent
sequence is an irreducible polynomial, i.e. it can not be factored in the finite field ][xFq .

Theorem III. 2: Let s(0), s(1), … be a homogeneous linear recurring sequence in ][xFq  with a

nonzero initial state vector, and suppose the characteristic polynomial )(xf is irreducible over ][xFq

and satisfies 0)0( ≠f . Then the sequence is periodic with least period r equal to ))(( xford .
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Definition of Order of a Polynomial: Let ][xFf q∈ be a polynomial of degree m>=1 with

0)0( ≠f , then the least positive integer e for which f(x) divides )1( −ex  is called the order of f and
denoted by ord(f).

Example: Consider the linear recurrence relation:
s(n+3)=5 s(n) ][7 xF∈

which has the charateristic polynomial ][  25)( 7
33 xFxxxf ∈+=−= . The characteristic

polynomial is irreducible and has ))(( xford =18 which is the same as the period r = 18.
It should be clear that the irreducible polynomial is not unique to the period, i.e. for the same

period we can find more than one irreducible polynomial. Thus, several linear sequences with
different characteristic polynomials, each might be irreducible,  could have the same period.

III. 3 Estimation of the recurrent sequence parameters
In dealing with real data, one is confronted with a periodic signal that has a known period

and a field that could be changed according to our scaling. For example, our exchange rate data
could be scaled to be between 0 and 7 or between 0 and 23. Each will result in a different field
while the period is still the same. Given both the field and the period, one could find the irreducible
polynomials, and the corresponding linear sequences, that will generate the observed period. By
comparing the data generated from the different tabulated polynomials and the actual observed data
one could determine the right equation that describes the observed recurrent sequence. This method
is called the look-up-table method.

III. 3a Look-up-table method
We know that the period r is a factor of )1( −kq , i.e. it is divisible by )1( −kq , where q is

the number of elements of the filed, and k is the degree of the characteristic polynomial. If we
assume that the characteristic polynomial of the linear recurrent sequence is irreducible, and since
the period r is approximately known from  the provided observations, then for each field order, q,
there is a finite number of k values that satisfy the condition that r is divisible by )1( −kq ,  i.e.

)1( −kq = 0 mod r
where mod is the modulus operation, for example 15= 0 mod 5 since 15 divides the modulus 5.
and for each polynomial degree k there is a finite number of irreducible polynomials.

Example: Let q=7 and let r=38, and assume that the linear recurrent sequence has an irreducible
characteristic polynomial of unknown degree k<5. Thus, k must satisfy the equation

38 mod 017 =−k

We have the following cases: k=1, yield 7-1=6 which does not satisfy the equation.
k=2, yields 49-1=48 which does not satisfy the equation. k=3, yields  343-1=342 which is equal to
9x38,  i.e it satisfies the equation. k=4, yields 2401-1=2400 which does not satisfy the equation and
so on.
For k=3, we have several irreducible polynomials; specifically:
(1) 12)( 3 ++= xxxf ,  which corresponds to the sequence s(n+3)=-2 s(n+1) -  s(n) = 5 s(n+1) + 6
s(n),
(2) 13)( 23 +++= xxxxf , which corresponds to the sequence s(n+3) =- s(n+2) - 3 s(n+1) – 1 = 6
s(n+2) +4 s(n+1) + 6.
 (3) 13)( 23 +++= xxxxf , which corresponds to the sequence s(n+3) = -3 s(n+2) -s(n+1) - s(n) = 4
s(n+2) + 6 s(n+1) + 6 s(n),
(4) 143)( 23 +++= xxxxf , which corresponds to the sequence s(n+3) = -3 s(n+2) - 4 s(n+1)- s(n)
= 4 s(n+2) + 3 s(n+1) + 6 s(n),



Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|No.3(10)

61

(5) 134)( 23 +++= xxxxf , which corresponds to the sequence s(n+3) = -4 s(n+2) - 3 s(n+1) - s(n)
= 3 s(n+2) + 4 s(n+1) + 6 s(n).
Thus, given that the sequence length is 34 and assuming that the data is generated through an
irreducible polynomial, one searches in the possible five (5) solutions given above.

In many situations, however, the linear recurrent sequence does not necessarily have a
characteristic polynomial that is irreducible. One might have the same period which is generated
through different polynomials. However, there is a link between these different polynomials as is
shown in the following theorems.

Theorem III. 3: Respresentation of an arbitrary polynomial: Any arbitrary monic polynomial
)(xf that belongs to the field qF  and of positive degree with 0)0( ≠f could be factored as:

∏
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=
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i

ixgxf
1

)()( (III. 7)

where the )(xgi are distinct monic irreducible polynomials over qF  and the ib are positive integers.

From this representation one could deduce how many sequences could be generated and the period
of each sequence. Thus, given the data there is a finite number of linear sequences with different
initial conditions and with different factorization that have the same period. The equations of these
sequences are known in advance, and one could pick from them the proper equation that best fits
the data.

Example: Let ][)1()1()( 2
3422 xFxxxxxf ∈++++= , i.e. )(xf is factored into two irreducible

polynomials in the field ][2 xF , )1( 2 ++ xx  and )1( 34 ++ xx . The first polynomial is raised to the

power 2,  i.e. 21 =b , and the second irreducible polynomial is raised to the power 1, i.e 12 =b .
According to the theories of polynomial representation [Lidl and Niederreiter; 1997], the linear
sequences that have the above charateristic polynomial but with different initial conditions could
have one sequence of period 1, three sequences with period 3, twelve sequences with period 6, sixty
sequences with period 15, and one hundred eighty sequences with period 30.

Another approach is to estimate the coefficients of the recurrent sequence directly using, for
example, minimum square error criterion. This approach, however, suffers from the many local
minima’s that exist and one has to use the Genetic Algorithm or the Simulated Annealing method to
find the desired integer coefficients. The simple Genetic Algorithm will be used in this report.

III. 3b The simple Genetic Algorithm
Given a sequence of N data points, all of which are integers and scaled to have a maximum

value of (q-1) and a minimum value of 0, one is interested in modeling this sequence as a linear
recurrent sequence that belongs to the field qF . Let k be a positive integer, and let 110 ,...,,, −kaaaa be

the unknown integer parameters that are elements of a finite field qF . Then, the data sequence

),...1(ˆ),0(ˆ ss  of elements of qF satisfy the relation:

ansaknsaknsakns kk +++−++−+=+ −− )(ˆ ...)2(ˆ )1(ˆ )(ˆ 021

for   n= 0, 1, …, (N-1-k) (III. 8)
Note that the estimate of the sequence at time (n+k), )(ˆ kns + , appears in the left hand side of
equation (III. 8) while on the right hand side, there appear also the estimated values of the sequence
not the observed values. The initial conditions could be either estimated or set equal to the observed
values.

Then, find the unknown integer parameters 110 ,...,,, −kaaaa that minimze

the cost function, J:
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Note that the cost function has more than one minima since equation (III. 8) is a nonlinear relation.
The global minima is obtained through the simple Genetic Algorithm as briefly described next.

Genetic Algorithms have been suggested as a global optimization tool [IEEE; 1994]. The
major advantage is that the search is guaranteed to converge to the global minima, and that no
gradient is required. As in many optimization techniques, there are several tuning parameters that
are problem dependent. In Genetic Algorithms, these tuning parameters are the probabilities of
cross over and mutation. The proposed algorithm estimates, adaptively, these two probabilities,
thus, increasing the convergence speed. The algorithm can be described as follows:
 (1) Each unknown parameter represents a gene. The unknown parameters are the coefficients of the
linear recurrent sequence model used.  In the proposed algorithm, each of the probabilities of
mutation, 

m
p , and cross over, 

c
p , is considered an unknown parameter, which is represented by a

gene. The genes are not mixed together; i.e., each gene is also a chromosome. Each parameter is,
independently, treated in terms of mating, cross over, and mutations. Each parameter is initialized at
random with a population of size S. Usually the population size is around 20 times the number of
unknown parameters. Thus, we have S vector solutions. Each parameter is coded through binary
code, and each parameter has minimum and maximum values. For example, if a parameter is known
to lie between 0 and 2, and if the code is 8 bits wide, then 00000000 corresponds to 0, and
11111111 corresponds to 2.
(2) Fitness-function calculations are performed for the S vector solutions. For each solution, we
calculate the negative of the Distance-measure, or the least squares, which represents the fitness
function ffi.

(3) The probability of reproduction for the ith solution, pri , is calculated according to the formula

ri

i

s
s

s Sp
ff

ff
=

=

= −

�
0
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where S is the total number of solutions. If there is a big discrepancy between the maximum and
minimum values of the fitness function, other forms of the probability of reproduction should be
used.
(4) At each iteration, two solutions for each parameter are picked at random according to their
probabilities of reproduction. These two solutions represent the two parents. This process is
repeated S/2 times. Thus, at the end we get S parents.
(5) The two parents will mate through the procedure of cross over. The mating will occur with
probability pc. The location of the crossover is chosen according to the uniform distribution. If the

size or code for each parent were 8 bits, then the cross over position would be between the second
and the seventh position. The result of the mating will be two offsprings. Thus, if the two parents
are xxxxxxxx and yyyyyyyy, and the cross over location is the third, then the resulting two
offsprings will be xxxxxyyy, and yyyyyxxx. The two offsprings represent two new solutions and
they replace the two parents.
(6) Mutation will be applied with probability pm. In this operation, every single bit in every

solution is subject to change with probability pm. For example, if a solution parameter is 10001111,

and the mutation will occur at the first bit, then the new solution parameter would be 10001110.
(7) The new S vector of solutions are used with the error criterion to find their corresponding fitness
function and the whole process is repeated again.
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(8) Stop the iterations when the number of iterations exceeds a limit or when the error is below a
threshold. The obtained best solution, with maximum fitness, is the desired solution.

In summary, the main steps of the proposed algorithm are: (1) for a window of N data
points, define the predetermined variables, including the lagged dependent variables, that are likely
to affect the dependent variable; (2) Using the distance measure of equation (III. 9), this is the
fitness function; (3) For the linear recurrent model, scale the data to have a minimum of zero and
maximum of (q-1); (4) use the simple Genetic Algorithm to get the minimum square error estimate
of the unknown coefficients, 110 ,...,,, −kaaaa , in equation (III. 8). Stop the iterations at the time

interval where the error reaches a minimum, or when the number of iterations exceeds a
predetermined value.

 IV. Discussion of Results

We study the behavior of the $US / EURO exchange rate based on data spanning the period
April 28, 2000 (week 1) to March 28, 2001 (week 54). The period between April 28, 2000 (week 1)
and February 2, 2001 (week 45) was used to find the models. The models were then used to forecast
the $US/EURO between the period February 9, 2001 (week 46)  to March 21, 2001 (week 54); a
total of 9 weeks. Before modeling the data as a linear recurrent sequence, we could first find the
trend in the data and study (1) the first difference in the data, and (2) the remainder between the
actual data and the trend. Instead we will study the data itself with its trend.

The data, the $US/EURO exchange rate, was first scaled to be between 0 and 12, q=13, i.e,
the field of interest is 13F . The exchange rate was then modeled as a nonhomogeneous linear

recurrent sequence. The maximum lag was set to 3. Other degrees of lags could also be used. This,
however, will increase the computation time. The lag of 3 yielded a characteristic polynomial of
degree 3, where the general model is:

13021    )(...)2()1()( Fansaknsaknsakns kk ∈+++−++−+=+ −−

for   n= 0, 1, … (IV. 1)
where s(n) is the $US/EURO exchange rate at time n.
The simple Genetic Algorithm was used to estimate the parameters of the linear recurrent sequence.
The estimates are given below:

2a 1a 0a a

-1 5 1 -1

Then, since all the parameters and the data 13F∈ , the linear recurrent equation that represents the

$US/EURO data is estimated as:
12)(ˆ)1(ˆ5)2(ˆ12)3(ˆ +++++=+ nsnsnsns

For n= 0, 1, … (IV. 2)
where )(ˆ ns is the estimated $US/EURO exchange rate at time n. Note that this equation is self
sustained or self exited i.e. it does not need external input or external observations. We used the
observations once to get an estimate of the unknown parameters. This is unlike conventional
estimates where, on the right hand side of the estimation equation, we have the observations and on
the left hand side we have the predicted or estimated value.

Through trial and error, it was found that taking the average of the three previous values
improves the accuracy of the estimates. Thus, the new $US/EURO estimate at time n, )(ˆ ny , is given
as:

3/)]2(ˆ)1(ˆ)(ˆ[)(ˆ −+−+= nsnsnsny (IV. 3)
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After taking the average, we scaled the estimates back to the actual levels of the data. Equations
(IV. 2) and (IV. 3), after scaling, were used to predict the exchange rate 9 weeks ahead. It could be
used to predict as many weeks in the future as we like. But since the $US/EURO might be
described by a time-varying linear recurrent equation, one should minimize the prediction steps as
much as possible.
The conventional AR(3) model was used for comparison purposes. The least square error for the
AR(3) model (0.011) was less than that of the smoothed linear recurrent sequence (0.021).
Nevertheless the prediction of the AR(3) was less accurate than that of the linear recurrent
sequence.
 In Fig. 1, we presented the actual $US/EURO exchange rate and the smoothed linear recurrent
model estimates. We also present the predictions in 9 weeks ahead using equations (IV. 2) and (IV.
3) and using the AR(3) model. As one notices, the AR(3) model predicts an upward trend while the
smoothed linear recurrent model was able to capture the ups and downs of the $US/EURO
exchange rate (weeks 46-54).

Fig. 1, Actual, Recurrent Sequence Smoothed 
Estimate, and AR(3) Estimate of $US/EURO; 

Prediction starts on Feb, 9, 2001 (Week Number 46).
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Fig. 1, Actual and Estimated $US/EURO; Linear Recurrent Sequence Smoothed Estimate, and AR(3) Estimate.
Predictions start on Feb, 9, 2001 (Week Number 46) till March 21, 2001 (Week Number 54).

V. Conclusions:
In this paper, the linear recurrent sequence model is introduced and applied to the problem

of modeling the $US/EURO exchange rate. Based on this model, one is able to forecast the
$US/EURO exchange rate several weeks ahead. The new linear recurrent sequence model assumes
that all the data and model parameters belong to a finite integer field. Properties of the model could
be evaluated based on the lags and the value of the parameters. An important feature is the period of
the recurrent sequence, which tells us about the possible repetition pattern in the data. This model
takes into consideration the fact that the actual (observed) data suffer from the reversal effect
phenomenon [Jegadeesh; 1990]. By using the simple Genetic Algorithm, we are able to find the
coefficients that give the global minima of the error criterion. The linear recurrent sequence model
could also have time-varying parameters, which, if estimated, might improve its prediction power.
These issues are currently under investigation.
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