
Tracking Mobile Targets Using Grid Sensor Networks

Ahmed M. Khedr

Ma thema tic a l D ep a rtmen t, F a c u lty o f S c ien ce,

Z a g a z ig U n iv ersity , E g y p t

ema il a mk hedr@ y a ho o .c o m

Abstract

We have considered a sensor network where a lot of sensor nodes are spread in a grid like manner.

T hese sensor nodes are capab le of storing data and thu s act as a separate dataset. T he entire network of

these sensors act as a set of distrib u ted datasets. E ach of these datasets has its local temporal dataset

along with spatial data and the geographical coordinates of a given ob ject or target. In this paper

an algorithm is introdu ced that mines glob al temporal patterns from these datasets and resu lts in the

discovery of linear or nonlinear trajectories of moving ob jects u nder su pervision. T he main ob jective

here is to perform in-network aggregation b etween the data contained in the variou s datasets to discover

glob al spatio-temporal patterns; the main constraint is that there shou ld b e minimal commu nication

among the participating nodes. We present the algorithm and analy ze it in terms of the commu nication

costs.

Keywords: Wireless sensor networks, in-network aggregation, spatio-temporal patterns, distributed
datasets, data mining.

1 Introduction

S ensors are tiny electronic dev ices eq uipped with a battery for energy source, sensing module for sensing
ph y sical ch aracteristic s, an onboard processor for performing computations, a wireless transceiv er for two
way communications with oth er sensors and suffi c ient memory for storing local sensing v ariables and for local
computations. A sensor network consists of a set of such sensors, deploy ed in h undreds to th ousands ov er
a region, th at is capable to gath er acoustic , magnetic , spatial, or seismic data and performing distributed
computations ov er th e gath ered data by indiv idual sensors to make meaningful inferences and th en send th e
data to end user or base station.

Wireless sensor networks promise nov el applications in sev eral domains. F orest fi re detection, battlefi eld
surv eillance, or monitoring of h uman ph y siological data are only in th e v anguard of plenty of improv ements
encouraged by th e deploy ment of sensor networks. S ensor nodes can be spread out in dangerous or remote
env ironments wh ereby new application fi elds can be opened. Wireless sensor networks enable th e monitoring
of a v ariety of possibly inh ospitable env ironments th at inc lude h ome security , mach ine-failure diagnostic ,
ch emical/ biological detection, medical and wild h abitat monitoring. O ne of th e main ch allenges raised by
sensor networks is th e fact th at th ey are usually power constrained, since sensing nodes ty pically ex h ibit
limited capabilities in terms of processing, communication, and espec ially , power. S ensor networks’power
limitation is buildup by th e fact th at, often, once deploy ed; th ey are left unattended for most of th eir lifetime.
T h us, energy conserv ation is of prime consideration in sensor network algorith ms in order to max imize th e
network’s operational lifetime.

In our paper, we assume th at stand alone sensors are spread in a grid like manner in a region to be
superv ised. E v ery sensor is capable of collecting information in its v ic inity and ex ch anging it with its
neigh boring sensors. B oth th e sensing range and th e distance from th e neigh bors are customizable attributes.
T h e sensors are capable of running self-decomposable algorith ms th at ex tract useful information from th e
data stored in th e sensors. U pon collection of data, th e main interest to us is to determine global patterns
from th ese sensors. M obility of th e sensors is dependent on th e application and its use. We h av e restric ted
our paper work to stationary sensors.

1

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|No.3(10)

66

2

Our main aim is to perform data mining using our algorithm on the data stored in these sensor nodes.
D ata mining in sensor networks has a host of real time applications that can yield very useful and profitable
results. For example, the following questions can be answered by implementing D ata Mining techniques on
the vast data available to us from a set of distributed databases in a state. Is there a pattern of increasing
crime rate in the diff erent counties of the state? H ow is this pattern spreading over the state and in which
direction? Which were the most aff ected areas in the state by hurricane Isabel? Which areas are most likely
to be aff ected by a power outage? Some of the main objectives for designing and developing algorithms
for mining of distributed data are: 1) There should be minimum communication between the diff erent data
sites; 2) The communication among the data sites should be secure.

Traditional data mining depends on centralized data in that the central site obtains and processes the
compressed information from all the sensors. Each sensor could report a time stamp and other measurable
values, without the need for detailed measurements. The central site receives such information from all
sensors and analyzes it to arrive at useful information like whether there is a pattern in the sensors or
whether any sensors are reporting outlier values (which might indicate defective sensor nodes). But in such
a case, bandwidth limitations make it virtually impossible to accumulate all sensor data at a central location
for processing. Exchange of information between nodes and the central processing node would result in
a very high communication cost of the network. Since communication cost is a major constraint, it is not
practical to transfer and integrate large amounts of data to a single site before carrying out an analysis. This
only results in very high overall complexity of the system. In most of the sensors, the local computations cost
is very low when compared to the communication cost between sensors. A lot of local processing capabilities
is present in each of the sensor nodes. H ence we need to develop algorithms which would minimize the
exchange of messages between sensors and maximize the computations at the local site. The main aim of
the algorithm would be to minimize the use of the available bandwidth and to maximize the use of the
local processing sensor node site. Thus, instead of the centrally processing all data, algorithms need to be
designed to summarize and aggregate data while they are in the network.

Our algorithm development based on the analysis of location-time points for patterns in sensor network,
one of the interesting applications of our algorithm is mining the trajectories of animals in a farming area,
to determine migration patterns of certain groups of animals. To the best of our knowledge the use of
location-time point’s analysis for patterns discovery in sensor network has not been explored before.

2 Related Research

There are many technical challenges associated with sensor networks, such as self-organizing algorithms,
energy-efficient routing protocols, data analysis/mining technology and network lifetime improvements [2,
11, 16 , 24]. The source of energy for a wireless sensor is most often an attached battery. The power in sensor
nodes can be used up simply by computations and transmissions. Furthermore it is infeasible to replace
thousands of nodes in hostile or remote regions. Therefore, conserving energy so as to prolong the network
lifetime is becoming one of the key challenges for such power constrained networks. R ecent research has
addressed this topic for example [6 , 14].

The term in-network processing denotes the data processing that happens inside a network. It is usually
used for data aggregation, collaborative signal processing and other similar problems in which data is required
from a majority of the nodes in a highly dense network. The approach adopted by in-network processing is
essential for emerging applications such as sensor networks where resources such as bandwidth and energy
are limited. In-networking query processing is critical for reducing network traffic when accessing and
manipulating sensor data [3]. [18] discusses building of efficient wireless sensor networks where in-network
aggregation techniques are applied to form a gradient between the diff erent nodes in the system.

One of the most important areas where the advantages of sensor networks can be exploited is for tracking
mobile targets. Scenarios where such network may be deployed can be both military (tracking enemy vehicles,
detecting illegal border crossings) and civilian (tracking the movement of wild animals in wildlife preserves).
Typically, for accuracy, two or more sensors are simultaneously required for tracking a single target, leading
to coordination issues. Additionally, given the requirements to minimize the power consumption due to
communication or other factors, we would like to select the bane essential number of sensors dedicated for
the task while all other sensors should preferably be in the hibernation or off state. In order to simultaneously

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|No.3(10)

67

3

satisfy the requirements like power saving and improving overall efficiency, we need large scale coordination
and other management operations. These tasks become even more challenging when one considers the
random mobility of the targets and the resulting need to coordinate the assignment of the sensors best
suited for tracking the target as a function of time. In this paper we propose an algorithm for managing
and coordinating a sensor network for tracking moving targets. The problem of tracking targets with sensor
networks has received attention from various angles. In [8], G alstyan and et al. proposed a distributed
online algorithm in which sensor nodes use geometric constraints induced by both radio connectivity and
sensing to reduce the uncertainty of their position. In that algorithm, sensor nodes use online observation of
a moving target to simultaneously improve both the moving target and their own positions. A small fraction
of reference nodes are pre-planned or G P S placements into the network. In [17], K irill and et al. presented
a two-level cooperative tracking algorithm using binary-detection sensors to track the object with more
precision and accuracy. In the first level phase, the local target position estimation is computed. Initially,
the target is estimated to equal to the position of the sensor node. As more information from the other sensor
nodes is available, the position estimate is recomputed as a weighted average of the sensor locations. Sensor
nodes that lie closer to the path of the target receive more weight. These estimations are then aggregated
to compute the path of the object, which produces a more precise estimate for the target location. In the
second level, a piecewise linear approximation of the path is computed using a line-fitting algorithm on the
positions obtained in the first level. In [7], Fang and et al. proposed a collaborative computation approach
where they count the number of targets in sensing terrain. They equate the computation of the number of
targets to the computation of leader nodes in the network with maximum signal strength. They aggregate
this information to get a final report of the total count. The work described in [12, 15 , 22] provides similar
distributed collaborative algorithms for target localization, classification and tracking.

The balancing between computation and communication has been explained in a lot of work in in-network
processing, this work is one of our motivations. The topographically addressed sensor nodes are similar to the
way we have dealt with the placement of nodes in our work [13]. A distributed algorithm, which estimates
the gradient of an environmental scalar variable such as temperature, intensity of light, atmospheric pressure,
etc. using a random sensor network, is discussed by [23]. [1, 26] have examined ways to provide in-network
aggregation for the internet in a traditional way. There is a concept of a router and a centralized node.
But in the practical world of sensors and other similar devices, it is very expensive for a central node to
communicate with all the other nodes in the system. Hence a hop by hop network is built where in each
node can talk with its neighboring node [18]. In this aspect, the central idea of our paper is similar with
[18]. There is no concept of a router or a centralized node in our work. This is the main difference from
active networks; we assume that our algorithm would be primarily used for applications/networks where the
bandwidth is limited and the communication costs between nodes are very high, but the computation costs
at the local node is very less. In [9] algorithms have been designed which use a dense deployment of nodes
to carry out in-network processing for data aggregation and similar problems. The main aim of this paper is
similar to that of our paper. The algorithm proposed is used to compute data aggregations over a system of
nodes by using in-network processing of the data stored in the nodes. We attempt to do the same, but there
is a temporal attribute of data which is involved in our paper. One of the main differences with respect to
[9] is that they do not attempt to address temporal attributes in data. Also, the methodology adopted is
different in that they assume a two way fl ow of data between nodes. To locate sensors in an ad hoc network,
we would need some kind of directory look up service. An algorithm is discussed by [10] that exploits the
characteristics of ad hoc wireless sensor networks to discover position information of the sensor nodes even
when they have been sprinkled all over the earth. Our work differs from this paper in that the sensor nodes
do not have global knowledge of the topology of their physical location. But in our work, the nodes in
the network need to know their global coordinates in order for them to start the in-network data analysis
and aggregation. J ini [27] is another such example. It uses J ava technology to provide directory service to
the nodes in the system. Thus it is very well suited to a network with a lot of bandwidth. However our
work is fundamentally different from these papers in that we do not support ad hoc networks. We assume
that the nodes already have information about itself and the other relevant nodes. Hence there would be
no exchange of information between nodes which is how we save on bandwidth. Ad hoc routing does not
support in-network processing. In contrast to this the main aim of our paper is to determine global patterns
in the network by using in-network aggregation.

K nowledge discovery and data mining are emerging fields, whose goals are to make sense out of large

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|No.3(10)

68

4

amounts of data collected, by discovering hitherto unknown patterns. Many interesting and efficient data
mining algorithms have been proposed [19, 20, 25]. These database-oriented mining algorithms can be classi-
fied into two categories: concept generalization-based discovery and discovery at the primitive concept level.
Generalization of attribute values (or concepts) is the main idea in the former (one such example is the DB-
Miner system) whereas the latter discovers strong regularities or association rules from databases without
concept generalization. There hasn’t been a lot of work in the area of mining temporal concepts. Most of
the existing work is based on time series analysis of temporal sequences. [4] discusses some of the challenges
posed by the temporal data. A few algorithms have been discussed which compute the temporal aggregation.
There has been some work done by [18] in the field of parallel algorithms for temporal aggregation. In this
paper, we discuss an algorithm which discovers temporal patterns among distributed databases.

The rest of the paper is organized as follows: In the following section, we give an introduction to the
basic concepts. A step by step outline of our algorithm is described in section 4. We describe the trajectory
of tracking in section 5. Section 6 analyzes the complexity of our algorithm. In section 6, we present our
simulation results. In section 8 we discuss the practical matter. We conclude our work in section 9.

3 Problem Formulation Terms

We consider sensor nodes that spread in a grid across a geographical area and collaborate among themselves
to establish a grid sensor network. Our development is in the context of temporal data being recorded by
a number of sensors. We outline some of the ideas used in the development of our algorithm. The dataset
used in our algorithm consists of X and Y coordinates of the points at which the light event is sensed, along
with the timestamp. Each sensor may have a number of such data points recorded in its local memory. We
refer to the term point to a combined set of information about moving object which includes x,y coordinates
and the timestamp.

3.1 L ocal H y p othesis :(LH)

Forming of L ocal Hypotheses is the first step that is implemented in each of the sensor nodes. A L ocal
Hypothesis is a set of three or more points, satisfying the following criteria

• Taking sets of three points or more, they should lie on the same line in the same direction;

• The points in the LH should be in ascending timestamp manner. The angle between two points p1

and p2 can be computed by the following equation:

A n g le (p1,p2) = arctan[(Y co r d (p2) − Y co r d (p1))/(X co r d (p2) − X co r d (p1))] (1)

We define the points p1, p2, p3 and p4 to be lying in the same direction if the angle between any pair of points
is the same as the angle between the other points e.g. in Figure 1, the points p1, p2, p3 and p4 represent
a L ocal Hypothesis as is indicated by a rectangular box in the figure. This can be applied to points lying
in a straight line in any direction. LH is considered as a straight line starts from the first point (F P), and
ends with the last point (LP) with a specific angle of slop. For that we consider the structure of LH as the
following: L H = (F P ,L P , angle). In Figure 1, LH1 has p1 as first point (F P), LH2 has p9 as the last point
(L P). In the same figure, p20 and p22 are at the same line but they are not form an LH because they are
not passing through at least one more point.

3.2 G lobal H y p otheses

Global Hypothesis Component:(G Hc) A G Hc component is formed when different LHs at sensor node
are merged in ascending manner according to their timestamps. The G Hc start at the first point in the first
attached LH and ends at the last point in the last attached LH with a specific angle equal to the slop of
any of merged LHs. We define the length of G Hc to be the number of LHs considered during forming G Hc.
We define the G Hc structure as G Hc= (S ta rt P o in t (S P), E n d P o in t (E P), a n gle).

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|No.3(10)

69

5

Global Hypothesis:(GH) Forming GH is the second step of our algorithm. A GH is considered as a
structure that contains set of GHcs components. The GH starts at the start point in the first attached GHc

and ends at the end point in the last attached GHc. We define the length of GH to be the number of GHcs
considered during forming GH. We keep track of GH direction by updating the PointChangeList which
includes the points at which the GH changes its direction. We define the GH structure as GH=(Start-
Point-O f (G H), <PointChangeList>, End-Point-O f(G H)). In Figure 1, the solid black line is the GH and
the small boxes represent the points belong to PointChangeList at which the GH changes its direction.

150

100

50

0
50 150100

*

*

*

*

*

*

*

*
*

*

P 1

P 9

L H -1

L H -2

L H -3

P 4

P 6

P 12

< p 1 , p 4 , 0
o

>

< p 6 , p 9 , 2
o

>

< p 9 , p 1 2 , 6 1 .5
o

>

N ot a n L H

p 2 0

p 2 2

P 3

P 2

 G H
< p 1 , < (p 6 ,2) ,(p 9 ,6 1 .5)>, p 1 2 >

Figure 1: Example of LHs and GH

4 Algorithm Outline

There are two stages of our algorithm; the first stage will be executed at every sensor node in the system
to generate the LHs (Local C omputation Step), while the second stage will be executed at the temporary
central nodes to generate the global hypothesis component GHc (Global C omputation Step). The main idea
of this algorithm is to maximize the local processing of data at the local sensor node and minimize exchange
of information, which produces meaningful results, between the nodes.

4.1 Algorithm Assumptions

The assumptions about the sensor network are the following:

1. All sensors have the same characteristics;

2. All sensors are spread in a grid like manner across the whole sensing area;

3. All sensors have the capability to capture and store the information of any moving object in their
sensing range. The information includes the approximate x, y coordinates, and the timestamp about
moving object. With different speeds of the moving object this may introduce local shifts into the
trajectory i.e. the object trajectory follow similar paths, but certain sub-paths are shifted in time.

N o specific assumptions are made about the movement pattern of the target. However we assume that
the targets originate outside the sensing region and then move inside. Also, it is assumed that the aggregated
data are reported to the end user.

4.2 Local C omputations

Each node in the system collects all the required information about the moving target in its range, and form
the LHs by executing the following procedure.

1. Output: Set of Local Hypotheses

2. Each node in the system, initially reads the data (say N points) from its database, and sorts it in
ascending order according to their timestamps.

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|No.3(10)

70

6

3. k = 1, i = 1 // k is the current LH number and i = 1 is the current point number

4. while(i < N)

(a) Find the angles Angle1 = angle(pi, pi+1) and Angle2 = angle(pi+1, pi+2)

(b) if (Angle1 = Angle2)

i. LHk.FP= pi ; LHk.LP=pi+2 ; LHk .angle = Angle2.

ii. for j =i+ 3 to N

• if angle(pj−1, pj) = angle(pi+1, pi+2)

– LHk.LP = pj ;

• else

– i = j, k = k + 1

– Goto step 4

• end if

iii. end for

(c) else i = i + 1

(d) end if

5. end while

6. end Local Computations

Initially, each node arranges the recorded points in ascending manner according to their timestamps line
2. We take the first three points and find the angle between the first and the second point, and the angle
between the second and the third point (line 4.(a)). In line 4.(b), if the computed angles in 4.(a) are the
same, the LH is established by setting up the first point as the FP of the LH, the third point as the LP of
the LH and LH angle will be the angle between the second and the third point. For further points may be
added to the current LH, we take the next point pj and determine its angle with the last added point to the
current LH. If (pj−1, pj) angle equal to the LH angle, we update LH.LP to pj (line 4.ii). If the first three
points are not at the same angle, we skip the first point of the three and start from the second one (line 4.c).

4.3 Global Computations

Every node in the system is associated with an index number which indicates the position of the node. If
the index number is 1, then it denotes the node at the bottom left corner. Index 2 refers to its adjacent
node on the right and the numbering of the index goes on in this way.

1. The list of LHs which is sent by the neighboring nodes is collected by the temporary central node and
is added in one data structure which exists in the temporary central node. In this way, we can gather
the details of the LHs of all the neighbors in the system.

2. Once the list of the LHs is collected, we go through them and merge them with the list of LHs of the
temporary central node to form Global Hypothesis components for the temporary central node. The
conditions which we check while merging these entries are whether the LHs of the different nodes lie
in the same direction or not and whether the time stamps of the LHs in the nodes are in ascending
order or not. The main criteria while forming the GHcs is that the temporary central node should be
a part of this GHc.

4 .3 .1 Global Hypotheses at Z ero Iteration

The following algorithm will be executed at every node in the system.

1. Inpu t: A set of local hypotheses.

2. O u tpu t: Global Hypothesis components GHcs

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|No.3(10)

71

7

3. send your LHs to your neighbor nodes

4. wait to receive the set of LHis from your neighbors

5. Add the received LHs to your D S i

6. sort all LHs in D S i according to their timestamps in ascending manner.

7. set j = 1 // j is the current number of GHc

8. set GHc(j).S P=LH1.F P , GHc(j).a ngle=LH1.a ngle,

9. set Angle1 = angle(first LH in D S i)

10. for every next LHk in the arranged LHs of D S i

(a) Find Angle2 = angle(LHk)

(b) if (Angle1 = Angle2)

i. Add LHk to GHc(j)

ii. GHc(j).E P= LHk.LP

(c) else

i. j = j + 1,

ii. set Angle1 = Angle2

iii. GHc(j)=LHk

iv. GHc(j).S P=LHk.F P

v. GHc(j).E P= LHk.LP

vi. GHc(j).a ngle=LHk.a ngle

11. end for

12. End Global Hypotheses at Z ero Iteration

After the list of LHs is formed at each node in the system, every node will send its LHs to its neighbors.
Then the node is ready to perform computations on the received lists of LHs to form the Global Hypothesis
components, these lists of LHs are stored at data structure D S i of the node Ni (lines 3-5). In line 6, the
list of LHs that Ni has in its D S i are arranged in ascending manner according to their timestamps. The
components of global hypotheses (GHcs) can be created as the following: if the object moves in one direction,
all LHs are set into one GHc (lines 10.a,b), but different GHcs are created if the object changes its direction
during the moving (lines 10.c).
After zeroth iteration, we have two options: we can either compute the entire global summarized pattern for
all the nodes in the system or compute the entire global summarized pattern for a predefined node only.

4.3.2 First Approach: Entire Global Computations for all Nodes

In this approach, we compute the consolidated global hypothesis at every node Ni in the system. The GHcs
for every node is merged with the GHcs obtained from the neighbors to obtain the consolidated GH.

1. Input: Set of global hypothesis components.

2. Output: The entire global hypotheses

3. Define PointChangeList as a list of elements, each element represents the location at which the object
changes its direction. Each element is represented by the coordinates (x,y) of the location and the
angle of changing, initialize PointChangeList to Φ

4. for (number of iterations required)

(a) send your GHcs to your neighbors

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|No.3(10)

72

8

(b) wait to receive GHcs from your neighbors

(c) Add all the GHcs from the input list into your DSi

(d) sort the GHcs in ascending manner according to their timestamps

(e) Call MergeGHCs(GHcs of DSi) // merge the successive GHcs that have the same angle and keep
the results in DSi

(f) Start-Point-of(GH)= GHc(1).SP

(g) End-Point-of(GH)= the end point of last GHc

(h) The PointChangeList will be the start point (GHc.SP) and the angle (GHc.angle) of each GHcs

5. end for

6. End Entire Global Computations for all the Nodes

At this point, every node in the system has its list of GHcs that formed at zero iteration. In order to discover
the actual pattern, we need to compute the consolidated global hypotheses for all the nodes in the system.
First the number of iterations to be performed is determined by the user (line 4), where as the number of
iterations increased more actual patterns discovered. We set all the GHcs of the input list into the DSi (line
4.c) then all the components are arranged according to their timestamps in ascending manner (line 4.d). As
in pervious step the calculations are performed for all the nodes in the system, but in this step, we work
with the GHcs. For node Ni, we merge the GHcs of Ni with its GHcs neighbors by applying MergeGHCs
procedure (lines 4.e). In lines 4.f,g,h, we get the global GH by finding the start point as the start point of
the first GHc, the end point as the end point of the last GHc component, and the PointChangeList as the
start point and the angle of each GH component in DSi.

Procedure MergeGHCs(GHcs of DSi)

1. Output: Merge the successive GHcs that have the same angle

2. set i = 1, // where i is the current number of GHc in DSi

3. set j = 1 // where j is the current number of new GHc

4. set GHc(j).angle = GHc(i).angle, GHc(j).SP = GHc(i).SP , GHc(j).EP)= GHc(i).EP

5. angle1 = GHc(i).angle

6. for every next GHc (GHc(i+1)) in DSi)

(a) angle2 = GHc(i+1).angle

(b) if (angle1 = angle2)

• GHc(j).EP = GHc(i+1).EP

(c) else

• j = j + 1

• angle1 = angle2

• GHc(j).angle = GHc(i+1).angle

• GHc(j).SP = GHc(i+1).SP

• GHc(j).EP) = GHc(i+1).EP

(d) end if

7. end for

8. End MergeGHCs procedure

The GHcs merging procedure works as the following: In lines 4,5, we assign the start point, the angle, the
end point of GHc(1) in the DSi to the start point, the angle, the end point of new GHc(j). If the angle of
the current GH component (GHc(i+1)) is equal to the angle of the previous GH component (GHc(i)), we
merge GHc(i+1) to the GHc(i) otherwise, we initiate a new GHj+1 with the start point, the angle, the end
point to the start point, the angle, and the end point of the GHc(i+1).

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|No.3(10)

73

9

4.3.3 Second Approach: Entire Global Summarized Pattern for Target Node

Because of the high complexity of the first variant where we determine the GH for all the nodes in the
system, we modify our requirements such that the global hypotheses for only a single node is required. First
we introduce the concept of a target node.

Target Node target node is a predefined node in the system and it could be chosen as any node in
the system but as a results of simulations it is advantageous to select the target node to be the middle node
of the grid and that to reduce the number of exchanged messages.

L ev els (Gradient) we define the gradient as the distance of each sensor node in the system to the target
node.

Gradient(SensorNode) = Dis tancebetw een(T argetnode, SensorNode)

This distance is calculated as the city block distance between the two nodes. We calculate the distance
of all the nodes form the target node in terms of units.

Dis tancebetw een(T argetNode, SensorNode) = C ity B lockDis tancebetw een(T argetnode, SensorNode)

Once the gradient for all the nodes is calculated, we divide the nodes into levels. The level of the tar-
get node set to zero and that of its neighboring nodes is set to one, where the number of levels increase by
increasing the distance from target node. The main idea behind assigning levels to the entire system of the
sensor nodes is that can be only one way of communication between the nodes. This means that nodes at
higher level only, can send messages to those at lower level and the nodes at lower are not allowed to send
messages to the nodes at a higher level. In this way, we save a lot on communication cost.

Global Computations for V ariant of Algorithm We introduce this step as a second variant of our
algorithm. We assume that the summarized GH to be computed for a particular target node only which
results in an increase in the efficiency of our algorithm. The target node is specified before we run our
algorithm. According to the target node location, the level will be assigned for each node in the system by
calculating the City Block distance of each node from the target node. Also we consider that the GHcs at
zero iteration already computed for every node in the system.
The second variant includes two procedures, the first procedure will be executed at the non target nodes
and the second one will be executed at the target node

GH Computation Procedure for non Target Node Ni

1. Compute your distance from target node based on coordinates of the node

2. Assign level based on computed distance;

3. wait to receive list of GHcs from neighboring nodes at higher level

4. sort the GHcs in ascending manner according to their timestamps

5. Call MergeGHCs(GHcs of DSi)

6. Check the level of all the neighbors

7. Send the current GH so far to neighboring node at the lower level

8. End GH Computation Procedure for non Target Node

In lines 1,and 2, we compute the distance between the target node and the other nodes in the system and as-
sign the levels to all the nodes in the system based on its distance from target node. The steps of exchanging
of messages to form the summarized global pattern come after we assign the level for all the nodes. In lines
3,4, and 5 each node at the lower level receives the current GHcs from its neighboring nodes at the higher

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|No.3(10)

74

10

level, sorts the received GHcs, and then merges the successive GHcs that have the same angle and k eep the
results in D S i b y ap p ly ing M ergeG H C s p ro cedure. In lines 6 ,7 each no de check s all its neighb o r levels, if
they are at a lo w er level simp ly each no de at the current level sends its merged GHcs to its neighb o rs at the
lo w er level.

T he fo llo w ing p ro cedure w ill b e ex ecuted at the target no de o nly
GH Computation procedure at the Target Node

1 . O utput: G lo b al H y p o thesis fo r target no de

2 . A ssign zero as y o ur level

3 . w ait to receive list o f GHcs fro m neighb o ring no des at higher level

4 . so rt the GHcs in ascending manner acco rding to their timestamp s

5 . C all M ergeG H C s(GHcs o f D S i)

6 . start-P o int-o f(GH) = GHc(1).S P

7 . T he PointChangeList w ill b e the start p o int and the angle o f each GHcs in D S i

8 . E nd-P o int-o f(GH) = the E P o f last GHc

9 . T he co nso lidated GH that fo rmed at the target no de is the desired o utp ut

1 0 . E nd GH C o mp utatio n P ro cedure fo r target no de

In line 2 , w e assign zero level fo r target no de. In lines 3 ,4 and 5 , no des at the higher level send their GHcs
to the target no de so rts the received GHcs, and then co mb ine the successive GHcs that have the same angle
b y ap p ly ing M ergeG H C s p ro cedure. In lines 6 ,7 , and 8 , the glo b al GH start p o int w ill b e the start p o int o f
the fi rst GHc, the end p o int w ill b e the end p o int o f the last GHc co mp o nent, and the PointChangeList w ill
b e the start p o int and the angle o f each GH co mp o nent in D S i. the current GH w ill b e the co nso lidated
GH and the desired o utp ut.

4 .3 .4 The Tw o V ariants Comparison

• T he fi rst variant co mp utes the GHs o f all the no des in the sy stem w hereas the seco nd variant w ill
co mp ute the GH fo r the target no de o nly .

• In the fi rst variant, there is no co ncep t o f a level w hereas in the seco nd variant, w e use co ncep t o f levels
ex tensively to o b tain the end results.

• F o r the seco nd variant, there is an initial step o f co mp uting the levels fo r each o f the senso r no des
b efo re the in-netw o rk aggregatio n can start. F o r the fi rst variant, there is no such initial step .

• In the fi rst variant, the info rmatio n fl o w o r message fl o w is in all p o ssib le directio ns w hereas in the
seco nd variant, the info rmatio n fl o w is fro m the o uter level o f the sy stem to w ards the inner level (o r
to w ards the target no de).

• T he fi rst variant req uires mo re than o ne iteratio n to aggregate the data (o r L Hs) fro m the diff erent
senso r no des to fo rm the fi nal result (GHs); the seco nd variant req uires o nly o ne iteratio n to p erfo rm
the in-netw o rk aggregatio n and to get the fi nal result. If the numb er o f iteratio ns is restricted, it
is p o ssib le that the length o f the GHs fo r the no des in the sy stem fo r the fi rst variant is less than
the w o uld b e fi nal length o f the GHs w hereas in the seco nd variant, the co nstraint o n the numb er o f
iteratio ns do es no t aff ect the length o f the fi nal GH.

• In the seco nd variant, the no des at the edge o f the sy stem do no t fo rm GHs o f length mo re than three.
In a similar w ay , w e can say that the no des just b elo w tho se at the edge do no t fo rm GHs o f length
mo re than fo ur. B ut in the fi rst variant, any no de in the sy stem can fo rm a GH o f any length greater
than o r eq ual to three.

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|No.3(10)

75

11

• In the first variant, the length of the GH increases by either one or two with every iteration depending
on the placement of the node. In the second variant, this is not applicable as the final length is formed
for the GHs for all the possible nodes at the end of the first iteration itself.

• The complexity of the first variant is much higher than the second variant. But the amount of infor-
mation available in the first variant is also much more than the second variant.

• In the first variant, processing of the GHs for all the nodes is done in a parallel manner; the nodes
compute the GHs independent of the other nodes. In the second variant, the processing of the GHs
for the target node is done in a sequential manner. The processing of the GHs is first done for the
nodes at a higher level and then is shifted to the nodes at the lower level.

5 Trajectory Description

The end user will have the summarized GH as a set of points (< x , y, tim e > in 3-dimensional location-
time) and the objective is to represent the trajectory of the moving object at the end user. A trajectory can
be represented by a sequence of connected segments each of which joins two consecutive reported points.
i.e. the start point of the reported summarized GH is connected by line segment to the first point in the
PointChangeList and the first point in the PointChangeList is connected by line segment to the next point
till the last point in the PointChangeList which is connected with the end point of the reported summarized
GH. To produce these segments, one way is to use the interpolation schemes (L ine Based Models) . These
schemes create trajectories that have angles at reported locations which do not represent well the smooth
trajectories of moving objects. The second used representation is the curve based trajectory representation
model using Catmull-R om spline which provides much more accurate trajectories than line-based models
when we have the same amount of data. O ne of the features of using Catmull-R om spline is that the specified
curve will pass through all of the control points and this is not true of all types of splines.

In curve based trajectory representation model, we represent the trajectory by a sequence of curve
segments, rather than line segments, each of which connects two consecutive points, where most natural
moving objects, such as airplanes, vessels, and vehicles, draw a smooth trajectory with no angles. The
parametric form of a third-order polynomial to obtain a spline is given by the following Equation.

P (t) = a0 + a1t + a2t
2 + a3t

3 (2)

where a0, a1, a2 and a3 are constant coeffi cients. Theses coeffi cients are determined from several equations
that reflect the properties of the cubic spline. To calculate a point on Catmull-R om spline curve, two points
on either side of the desired point are required. The point is specified by a value t that signifies the portion
of the distance between the two nearest control points.

Given a GH of four points p0 ,p1, p2, p3. Catmull-R om spline in equation form: (for a point q on the
curve at t) will be

q(t) = 0.5 ∗ ((−p0 + 3 ∗ p1 − 3 ∗ p2 + p3) ∗ t3 + (2 ∗ p0 − 5 ∗ p1 + 4 ∗ p2 − p3) ∗ t2 + (−p0 + p2) ∗ t + 2 ∗ p1) (3)

t takes values between 0 and 1, and the curve passes through p1 at t = 0 and p2 at t = 1. To do more than
two points, we can step through the array of points using the previous point, the current point, and the next
two points as the four points for the spline. For each segment, we can draw a curve for 0 < t < 1. This
curve will be between the current point and the next point.

6 C om plex ity C om pu ting

S ince the effective lifetime of each sensor node is determined by its power supply, and since transmitting a
single bit of data by sensor node is equivalent to 800 instruction execute at a sensor node (i.e. it is required
a lot of energy to transmit a single message). For these reasons the most preferable system is the one which
requires minimum number of message to be exchanged between the nodes as much as possible to preserve the
amount of bandwidth and maximize the sensor node lifetime. Hence the main way to evaluate our system
complexity will be in terms of the number of message exchanged between the nodes in the system. W e

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|No.3(10)

76

12

consider the two variants of our algorithm, However for both these variants, the initial two steps (computing
of the local hypotheses and the global hypotheses at zero iteration) are common and hence we first calculate
the complexity of these two steps.

6.1 Local Computation Cost

Each node in the system analyzes the collected data to extract the local patterns, since the extraction of the
local patterns or forming the LHs occurs locally, therefore there is no communication cost.

6.2 G lob al Computation Cost

Complexity Computing of GHcs at zero Iteration For computing the GHcs at zero Iteration, each
node gets the list of LHs from all of its neighbors, according to the placement of the node in the system
the number of neighbors for any node ranges from three to eight. A node at the corner has three neighbors
where as a node any where on the edge has five neighbors and a node any where else has eight neighbors.
If we consider n × n system in which we have n2 nodes. The number of corners nodes is four, the number of
nodes on the four edges is 4(n−2), and the number of nodes elsewhere in the system is (n−2)(n−2) = (n−2)2.
The total number of neighbors for all nodes in the system will be: 3∗4+5∗4(n−2)+8∗(n−2)2 = 8n2

−12n+4.
Therefore, the number of required messages for this step will be 8n2

− 12n + 4

6 .2 .1 Complexity Computing of entire GHs for all Nodes

In this step, we compute the entire GH for all the nodes in the system. Here again, the messages will
be exchanged between nodes and all of their neighboring nodes, but the difference here is that these mes-
sages are to form a combined GH. The number of messages needed for this would be the same as before
8n2

− 12n + 4. After every iteration a new GH component (GHr e s u lta n t) added to GH or length of GH
component increases by either one or more depend on their location in the system and every node replace
its existing GH with the new GH which was formed during that iteration. The updated GH is used to
exchanged with the neighboring nodes during the next iteration. In this way the messages keep getting
exchanged between the nodes to eventually form a global summarized GH. If we require k iteration to form
the complete GH, the total number of message exchanged would be k ∗ (8n2

− 12n + 4). We define the best
case and worst case computations for this system as follow.

B est Case: The least number of iterations to form the entire summarized global patterns is the best
case. This occurs in and a round the center of the system, since every node in center have neighboring node
on both sides, a new GH length added to their GHs during every iterations. Thus it takes only n/ 2 − 1
iterations to form the entire GH, then the complexity for this step will be: (n/ 2 − 1) ∗ (8n2

− 12n + 4).
where k = (n/ 2− 1), in the best case for the number of iterations for n×n system. Therefore the algorithm
complexity in the best case will be:

T o tal N u mber o f Exch ang ed M es s ag es = (8n2
−12n+4)+(n/ 2−1)∗(8n2

−12n+4) = 4n3
−6n2+2n (4)

W orst Case: Worst case is reverse to the best case where worst case is the case in which it takes the
maximum number of iterations to form the entire summarized global patterns. This occurs for the nodes on
the edge and at the corner of the system. Since they have neighboring node on only one side to contribute
to the growth of their GHs during every iteration the length of their GH increases by only one and thus
it takes n − 1 iteration to form the entire GH, therefore the complexity will be (n − 1)(8n2

− 12n + 4).
Therefore the algorithm complexity in the worst case will be:

T o tal N u mber o f Exch ang ed M es s ag es = (8n2
−12n+4)+(n−1)∗(8n2

−12n+4) = 8n3
−12n2+4n (5)

6 .2 .2 Complexity Computing of GH for Target Node only

In this case the user specifies a predefined target node from among the nodes in the system. The GH are
then computed for this node only.
The first step in this case is that the target node informs all the nodes in the system about itself being the

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|No.3(10)

77

13

target node. This is done through exchange of messages, which requires 8n2
− 12n + 4 (in the worst case)

messages. Which is the total number of neighbors for all the nodes in the system.
The next step is the forming of the levels in the system based on the gradient of each node, where in this step
starting from level zero or the target node, levels are assigning to all the nodes in the system in sequential
manner. The number of messages required to do this is 8n2

− 12n + 4.
Once all the level are assigned, messages start getting exchanged from nodes in the outer level to those in
the inner level. If we assume the average number of levels to be assigned is L, average number of nodes in
each level is n0, and the average number of neighboring nodes in the lower level for any node in the higher
level is ni then the total number of exchanged messages is L∗n0 ∗ni. Therefore the total number of message
required to compute the GH for the target node is given by

Total Number of Exchanged Messages = 2(8n2 + 12n + 4) + L ∗ n0 ∗ ni (6)

From equations 5, and 6 we can conclude that the complexity of computing the consolidate GH is reduced
from O(n3) to O(n2) in the case of second approach (target node only).

7 The Simulation Results

The algorithms were programmed and tested by J ava language. In the initial tests, 25, 36, 49, 64, 81, and
100 nodes were placed in a grid like manner ((5 × 5), to (10 × 10)).

We choose the following issues to generate results to compare the two variants:

• The total number of nodes in the system,

• The location of the target node in the system (This will be applicable to second approach only),

• The total number of iterations (This will be applicable to first approach only), and

• The total number of exchanged messages.

Here we present the results of the tests we had run for both variants of our algorithm.

• The total number of nodes in system: In the first approach, the number of messages exchanged
between nodes in the system increase with the increasing of the grid size. The increase in size of the
grid from 5 × 5 to 10 × 10 implies increasing the number of messages by almost 66% .

In the second approach, we fixed the target node and varied the size of the grid from 5 × 5 to 10 ×

10, this implies increasing the number of messages by almost 50% .

• The location of target node in the system: We compare the number of messages exchanged with
different positioning of the target node in the system. We assumed that the size of the grid is 10 × 10
with the total number of nodes in the system to be 100. We vary the position of the target node from
the center of the grid to the edge of the grid and to the corner of the grid. The number of levels formed
is lesser when the target node is placed at the center than at the edges or at the corner. We found
that the number of messages increases with the number of levels in the system. Hence the complexity
or the number of messages increases when the target node is placed at the edge or at the corner of the
system.

Figure 2 shows comparison between the numbers of messages exchanged and the location of the target
node. As expected the number of messages when the target node at center is less than the number of
messages when the target node at the edge or the corner.

• The total number of iterations: We refer to an iteration as a procedure in which the nodes receive
GHcs from their neighboring nodes and merge them with their own GHcs based on the criteria to form
a consolidated GH. The length of GH increases with every iteration. We found that we require more
than one iteration to obtain the entire list of summarized GHs. In our implementation we did vary
the number of iterations from one to eight, we found the following:
When we increase the number of iterations, the number of messages, and the amount of information

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|No.3(10)

78

14

Figure 2: The number of Exchanged Messages versus the target node location

will be increased.
With every iteration the number of nodes, that form a part of GH, increases. We assumed that the
node in consideration is a node on the edge or at the corner.
In a more generic way, we can say that the number of iterations required for a node on the edges or on
the corner is equal to the grid size and the nodes elsewhere require a total of (grid size/ 2 - 1) iterations.
Also, the number of neighbors for any node is dependent on the position of the node. Since a node on
the edge or the corner has a lesser number of neighboring nodes than any other node in the system,
and then it takes a higher number of iterations to compute its entire GH.

Number of messages exchanged versus Number of Iterations

performed

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7 8

Number of iterations

N
u
m
b
e
r
o
f
M
e
ss
a
g
e
s Number of

messages

Figure 3: Exchanged messages versus the number of Iterations - for a node not on edges/ corner

The nodes at the corner or at the edge need about double the number of iterations to build their entire
GH when compared to the other nodes in the system, see Figure 3.

• The total number of exchanged messages: We found that using the second variant the number
of messages is reduced. If we used 10* 10 system of sensor nodes we found that:

1. We require 684 exchanged messages to form the GHcs at each node in the system.

2. For the first variant, we require 6165 exchanged messages for all the nodes in the system to form
the global entire summarized pattern,

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|No.3(10)

79

15

3. For the second variant, we require 1611 exchanged messages to form the global entire summarized
pattern at target node. The explanation of these messages will be as the following:

(a) 684 exchanged messages to inform all the nodes in the system about the target node.

(b) 684 exchanged messages to assign all the levels to all the nodes in the system based on the
gradient of each node.

(c) Once all levels are assigned, as shown in Figure 4 (there are nine levels are assigned and the
target node at the corner of the system). In levels nine,eight, seven, and six we have 19, 17,
15, and 13 nodes respectively will exchange 51, 45, 39,and 33 messages to the neighboring
nodes in the inner level. In levels five, four, three, and two we have 11, 9, 7, and 5 nodes
respectively will exchange 27, 21, 15, and 9 messages to its neighbor nodes in the inner level,
and for level one only 3 nodes will exchange 3 messages to the target node.

500

4 50

4 00

3 50

3 00

2 50

2 00

1 50

1 00

50

0
5004 504 003 503 002 502 001 501 0050

Target

L ev el-1

L ev el-2

L ev el-3

L ev el-4

L ev el-5

N o d e

L ev el-6

L ev el-7

L ev el-8

L ev el-9

Figure 4: Target node at the corner in 10x10 system of sensor nodes

Hence we can see that in first variant there is 6156 message exchanged in the network to discover global
spatiotemporal pattern but in the second variant required only 1611 message, therefore it is clear that there
is significant amount of saving in messages between the two variants, see Figure 5.

Number of Exchanged Messages in the two variants

0

1000

2000

3000

4000

5000

6000

7000

25 36 49 64 81 100

Number of Nodes

N
u
m

b
e
r

o
f
M

e
ss

a
g
e
s

first approach

second approach

Figure 5: Exchanged Messages in the two V ariants

8 Practical Matters Comments

Node Failure We discuss the recovery scheme in the presence of link/node failure, our recovery schema is
very simple to be suitable for sensor networks. The recovery process comes as follows: The base station starts

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|No.3(10)

80

16

to periodically send connect messages. When a sensor receives a connected message, it reply to base station
by connect messages to inform the base station about its existence. Connect messages that are periodically
sent by sensor node or base station are very small, each message consists of approximately 1 bit of data (1
indicate the existence of alive node else indicate that the death of the node). Whenever the time out of the
base station out, and there is no response back from the sensor node the base station know this node needs
to be replaced.
Message Loss/Collision are very common in application involving wireless communication because of the
frequent environmental disturbances in the channel. Such situations are very difficult to detect at the sending
sensor as it is not sure whether the message has reached its neighboring or intended sensor. Thus, to enable
detection of messages losses at sending sensor, an acknowledgment signal can be used from the neighboring
sensor to indicate proper reception of the message. If the sensor dose not receives such an acknowledgement
signal after a time limit, then it can retransmit the message to enable proper working of the algorithm.
Communication R eliability In our setting we assumed that there was communication reliability in the
network. There was some work focuses on the problem of communication reliability in sensor network, ex-
ample of this work is in [21].
Localization Many sensor network applications require that the locations of the individual sensors be
known, since sensor readings are in general of little use without geographic context. However, the same
attributes that make sensor networks attractive make obtaining this information difficult. By placing a large
number of relatively cheap sensors, it is possible to obtain many accurate measurements from sensors close
to phenomena of interest; however, the sheer number of sensors and the need to minimize costs precludes
manually recording the sensors’ locations. It also precludes brute force solutions such as equipping each
sensor with a GPS unit. Consequently, we would like the sensors to determine their own positions after
placement. This is known as localization, and is typically achieved by having each sensor compute range
measurements to its neighboring sensors, then algorithmically embedding the graph formed by these ranges
into a coordinate system. This coordinate system is then used to perform location-dependent tasks such as
geographic packet routing or target tracking. Localization is often complicated by the difficulty of obtain-
ing enough accurate pair-wise range measurements between sensors. Inter-sensor ranges can be corrupted
by noise or lost entirely due to occluded line-of-sight. Thus, consistently accurate localization requires ro-
bustness in the face of missing or low quality measurements. N evertheless, localization is rarely if ever the
purpose of a network. Sensor networks are typically deployed to observe active phenomena in the environ-
ment, and require accurate localization as a means to that end. As a result, there is pressure in localization
research to achieve accuracy and robustness using as little hardware as possible. Target tracking is one
of the motivating localization-dependent applications of sensor networks. In tracking applications, sensors
jointly observe phenomena, which may be people or objects passing through the network or physical effects
such as bullet shock-waves or anomalous sounds. Once a phenomenon is detected, the sensors collaborate to
determine its spatial location. This estimate is reported to a computer or person monitoring the network.
In our algorithm we consider that each sensor node is aware of its own location. Where given the locations
of the sensors and accurate range information to the target, it is straightforward to determine the target’s
position based on the discovered sensor positions. Consequently, a localization error in our case depends on
the specialized localized algorithm which handle localization problem.
Calibration In an ideal world, sensors would arrive from the factory fully calibrated to begin taking ac-
curate measurements of their surroundings. However, this ideal situation is rarely achieved. For instance,
deployment conditions such as temperature affect the accuracy of ranging algorithms based on acoustic time-
of-flight by altering the speed of sound. Furthermore, as shown in [28], differences between sensors can also
result in mis-calibrations that are difficult to correct before deployment. Calibration in the field can therefore
offer meaningful improvement in both localization and target tracking accuracy. As with localization, there
is considerable economic incentive to develop auto-calibration algorithms that allow sensors to self-calibrate
in the field without external intervention.

9 Conclusions

In our work, we considered the problem of mining temporal data in distributed datasets. We worked
with sensor nodes which were capable of capturing and storing approximate coordinate information about a

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|No.3(10)

81

17

moving object or a target object. These nodes were placed in a grid and our algorithm was used to predict the
nonlinear trajectory of the moving object. We considered this equivalent to mining of global spatiotemporal
patterns from geographically distributed datasets. Since there is only one database scanning required in the
beginning, the complexity of our algorithm reduced. The concept of maximizing the computations at the
local sites and minimizing the exchange of messages between nodes help reduce the load on the network.
This formed the crux of our algorithm. We reduced the complexity further, by introducing a variant of our
algorithm wherein the global patterns are required for a single node only. We defined a target node and
levels in the system. Then we went on to show that the number of exchange of messages required in the
second variant of our algorithm was much lesser and that the complexity of the second variant falls down to
as low as 33% of the first variant of our algorithm. We then did a compare and contrast of the two variants
and presented results obtained for the various test cases for both the variants of our algorithm.

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|No.3(10)

82

18

References

[1] Amir E., McCanne S. and K atz R. H., An active service framework and its application to real-

time mu ltimedia transcoding, In Proceedings of the ACM SIGCOMM conference; pages 178-189,
Vancouver, Canada, 1998.

[2] Bhardwaj M., Garnett T., and Chandrakasan A. P., U pper bou nds on the lifetime of sensor

networks, Proceedings of IEEE ICC’01, Helsinki, Finland, 2001, p.785.

[3] Bonfils J.B. and Bonnet P., Adaptive and D ecentralized O perator Placement for In-N etwork

Q u ery Processing, In Proceedings of the Second International Workshop on Information Pro-
cessing in Sensor Networks; pages 47-62, Palo Alto, CA, 2003.

[4] Bongki Moon, Ines Fernando Vega Lopez, and Vijaykumar Immanuel., S calab le algorithms for

large-scale temporal aggregation, Technical Report TR 98-11, Tucson, AZ 85721, 1998.

[5] Broch J., Maltz D .A., Johnson D .B., Hu Y .C. and Jetcheva J., A performance comparison of

mu lti-hop wireless ad hoc network rou ting protocols, In Proceedings of the ACM/IEEE Interna-
tional Conf. on Mobile Computing and Networking, D allas, TX , 1998, p. 85.

[6] Chang J. H. and Tassiulas L., E nergy conserving rou ting in wireless ad hoc networks, Proceed-
ings of IEEE INFOCOM’00, Tel Aviv, Israel, 2000, p.22.

[7] Q ing Fang, Feng Z hao and Leonidas Guibas, Cou nting T argets: B u ilding and M anaging Ag-

gregates in W ireless S ensor N etworks, Palo Alto Research Center (PARC) Technical Report,
2002.

[8] Aram Galstyan, Bhaskar K rishnamachari, K ristina Lerman, and Sundeep Pattern, D istribu ted

O nline Localization in S ensor N etworks U sing a M oving T arget, IPSN’04 , 2004.

[9] Heidemann J., Silva F., Intanagonwiwat C., Govindan R., Estrin D . and Ganesan D ., B u ilding

E ffi cient W ireless S ensor N etworks with Low Level N aming, In Proceed. of the ACM Symposium
on Operating Systems Principles, Chateau Lake Louise, Canada, 2001, p.146.

[10] Heinzelman W.R., Chandrakasan A. and Balakrishnan H., E nergy -effi cient commu nication pro-

tocols for wireless microsensor networks, In Proceedings of the Hawaii International Conference
on Systems Sciences, Wailea Maui, HI, 2000, p.4.

[11] Intanagonwiwat C., R. Govindan, and D . Estrin., D irected diff u sion: a scalab le and robu st

commu nication paradigm for sensor networks, Proceedings of ACM MobiCom’00. Boston, MA,
U SA, 2000, p.56.

[12] Aslem Javed , Z ack Butler, Florin Constantin, Valentino Crespi, George Cybenko, and D aniela
Rus, T racking a M oving O bject with a B inary S ensor N etwork, ACM Sensys 03 , 2003.

[13] K hedr Ahmed M, Raj Bhatnagar A D ecomposab le Algorithm for M inimu m S panning T ree D is-
tributed Computing- Lecture Notes in Computer Science Springer-Verlag Heidelberg Volume
2918 / 2004 pp. 33-44

[14] Lindsey S. and Raghavendra C.S., E nergy effi cient broadcasting for situ ation awareness in ad

hoc networks, Proceedings of ICPP’01, Valencia, Spain, 2001, p.149.

[15] Liu J.J., Liu J., Reich J., Cheung P., and Z hao F., D istribu ted grou p management for track

initiation and maintenance in target localization applications, In Proc. of 2nd workshop on
Information Processing in Sensor Networks (IPSN), 2003.

[16] Manjeshwar A. and Agrawal D .P.., T E E N : A rou ting protocol for enhanced effi ciency in wireless

sensor networks, Proceedings of the IPD PS Workshop on Issues in Wireless Networks and
Mobile Computing. San Francisco, CA, 2001, p.2009.

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|No.3(10)

83

19

[17] Kirill Mechitov and Sameer Sundresh ,Cooperative Tracking with Binary-Detection Sensor Net-

works, ACM Sensys’ 03, 2003 .

[18] Nagpal R., Shrobe H. and Bachrach J., Organizing a global coordinate system from local in-

formation on an amorphous computer, Technical Report AI Memo No. 1666, MIT Artificial
Intelligence Laboratory, 1999.

[19] Rajeev Rastogi and Kyuseok Shim., Mining Optimized Association R ules with Categorical and

Numeric Attributes, IEEE Transactions on Knowledge and Data Engineering, 14(2002), p.29.

[20] Rakesh Agrawal, John C. Shafer, Parallel Mining of Association R ules, In IEEE Trans on
Knowledge and Data Engineering, 1996.

[21] Senug Jong Park , Raghupathy Sivakumar, Poster: Sink to Sensor R eliability in Sensor Net-

works, MobiHoc’03, Annapolis, Maryland, USA, 2003.

[22] Jaewon Shin, Lenidas Guibas and Feng Zhao, A distributed Algorithm for Managing Multi-

target Identities in wireless Ad hoc Sensor Networks, 2nd workshop on Information Processing
in sensor network (IPSB’03), Palo Alto, California , 2003.

[23] Slobodan S.N. and Shankar S., Distributed G radient Estimation Using R andom Sensor Net-

works, In Proceedings of the First ACM International Workshop on Wireless Sensor Networks
and Applications, Atlanta, GA, 2002.

[24] Sohrabi K., Gao J., Ailawadhi V., and Pottie G. J., Protocols for self-organization of a wireless

sensor network, IEEE Personal Communication, 2000, p.16.

[25] Ramakrishnan Srikant, Quoc Vu, Rakesh Agrawal. Mining Association R ules with Item Con-

straints. In Proceedings of the Third International Conference on K nowledge Discovery and

Data Mining, August 1997.

[26] Tennenhouse D.L., Smith J.M., Sincoskie W.D., Wetherall D.J. and Minden G.J., A Survey of

Active Network R esearch, IEEE Communications Magazine; pages 80-86, 1997.

[27] Waldo J., The J inni architecture for network-centric computing, Communications of the ACM,
1999, p.76.

[28] Whitehouse C., The design of calamari: an ad hoc localization system for sensor networks,
Master’s thesis, University of California at Berkeley, 2002.

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|No.3(10)

84

