
Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|No.3(10)

90

Dynamic Approach to prohibit the Diffie-Hellman Protocol Interception
1 M. El Hamzaoui, 2 A. Sekkaki, 3 B. Bensassi, 4 C. B. Westphall, 5 C.M. Westphall

1,2,3 University Hassan II Aïn-Chok, Faculty of sciences, Department of Mathematics & Computer Sciences,
P.O Box 5366, Maarif, Casablanca. Morocco.

1 m_elhamzaoui@yahoo.fr, 2 a_sekkaki@yahoo.fr, 3 bahloul_bensassi@yahoo.fr
4,5 Federal University of Santa Catarina, Network and Management Laboratory, Caixa Postal 476, 88040-970,

Florianopolis – SC – Brazil
4 westphal@lrg.ufsc.br, 5 carla@lrg.ufsc.br

Abstract:
Diffie and Hellman invented in 1976 a protocol bearing their names (Diffie-Hellman)
that was at the origin of the cryptography. The most important characteristic of this
protocol is that it enables two connected parties to generate a shared secret without
having any preliminary information about one other. However, The point of
vulnerability of this protocol is the active attack and more precisely the interception of
the security information exchanges. In this paper, we present a dynamic Public Key
Infrastructure (PKI) to circumvent the Diffie-Hellman vulnerability. The main objective
of this PKI environment is to discharge the connected parties from all management
tasks. Our PKI environment is composed of a PKI Server (PKIServ) to manage the
security inter the connected parties and a Monitoring Service (MS) to automate the PKI
environment functioning. A prototype has been implemented with CORBA environment
and same experimental results are presented.

Keywords: Cryptography, Diffie-Hellman protocol, PKI, Policy-Based Management,
Ponder Language.

1. Introduction
Cryptography plays, nowadays, a significant role in the realization of the security services and
mechanisms (ISO 7498-2). Thus, several cryptography algorithms were developed in order to be
used in security protocols and applications. For example, IPsec protocol (IP Security) [01] uses
security mechanisms that rest on the cryptography such as AH (Authentication Header) [02] and
ESP (Encapsulating Security Payload) [03]. The AH Mechanism uses authentication algorithms
while ESP (Encapsulating Security Payload) employs encryption algorithms [04].
The cryptography algorithms require the use of the private and public keys and in the case of
distributed systems, the management of the keys through a public keys infrastructures will be
essential. The main tasks of the cryptography keys’ management are generation, distribution,
storage and suppression of keys.
The Diffie-Hellman (DH) protocol [05] was the origin of public-key cryptology. The protocol
principle is that two people who wish to communicate can exchange the necessary information to
generate a shared secret without having any preliminary information about one other. However, the
Diffie-Hellman vulnerability point is the active attacks. Thus, an interceptor can sneak between the
connected parties and shares with each one of them a different secret. However, the two connected
parties think they are sharing the same shared secret.
Several approaches were proposed to circumvent the interception problem. These approaches were
based on the public values authentication used to generate the shared secret. However, the problems
of these approaches are on the one hand the elimination of a significant advantage of Diffie-
Hellman which is the possibility of generating a shared secret without having any preliminary
information, and on the other hand these approaches continue the security information between the
connected parties.
Policy-based management consists in optimising the managers’ efforts by making the distributed
system management easy and dynamic as much as possible. The policy-based management

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|No.3(10)

91

principle [06] is first to define the management policies and to distribute and apply them, then
present them as a set rules. Finally, these rules must be decided at Policy Decision Points (PDP) and
will be also performed at the considered Policy Enforcement Points (PEPs) which exist on the
interest network nodes. To specify policies, we could use the ponder policy specification language
[07] which is an important tool for specifying security and management policies for distributed
systems.
Our work objective is to solve the interception problem of Diffie-Hellman protocol. To avoid any
Security information exchange between connected parties, our solution will be based on the use of
an environment of security dynamic management (PKI environment). All security tasks such as the
exchanges of public values, the private values generation, the shared secrets calculation, the keys’
generation etc... will be dealt with in this environment. The basic elements of our security
environment will be the Ponder policy specification language, the PKI Server (PKIServ) and a
Monitoring Service (MS)to automate the PKIServ functioning. Our approach will be compared with
other DH-based protocols to show
This work will be presented as follows, in the second section we will present the cryptography
principle. The third section will display Diffie-Hellman protocol. Concerning the fourth section, it
will briefly outline the Ponder Language. The fifth section will include our solution. The
comparison of our approach with other DH-based protocols will be the subject of the sixth section.
Finally, the conclusion and perspective of this work will be featured in the last section.

2. Cryptography principle
Cryptography is important in the realization of the security services and mechanisms (ISO 7498-2).
Thus, several cryptography algorithms were developed in order to be used in security protocols and
applications.
In cryptographic terminology [08], the message or the data that someone wants to send to a receiver
is called plaintext or cleartext. Encryption is the way to hide the massage contents from outsiders by
encoding it and the encrypted message is called ciphertext. Decryption is the process to retrieve the
plaintext from the ciphertext.
Cipher or Encryption/decryption methods are based on the use of keys:
On one hand, the cipher type depends on the used key. Thus, one has to distinguish between two
types of cipher :
Asymmetric cipher (public-key cipher) : The encryption key is public in order to be used by anyone
to encrypt the exchanged message, whereas the decryption key is private to be used only by the
proper recipient to decrypt the message. The encryption key is also called the public key and the
decryption key is called the private key.
Symmetric cipher (secret-key cipher): The same key, which is also called secret-key, is used to
encrypt and decrypt data.
On other hand, the key type depends on the function that the later can perform [09]:
- Keys to cipher other keys: This type of keys is used to cipher other keys. In the context of public

key cryptography, they correspond to the public keys used to cipher the transported ones.
- Master Keys: They are used to generate keys by derivation.
- Keys to cipher data (Session keys): They are generally secret keys which are useful for ciphering

exchanged data. They are characterized by their weak lifetime.
Cryptography algorithms require the use of the private and public keys and in the case of distributed
systems, the use of public key infrastructures is essential to manage keys(generation, distribution,
storage and suppression).
In order to establish secured communications, the use of a mutual authentication and key exchange
protocol is very essential (secure protocol)[10]. A secure protocol [11] is a protocol such that the
following conditions hold in all cases where one party, say Alice, executes the protocol faithfully
and accepts the identity of another party:
• At the time that Alice accepts the other party’s identity (before she sends or receives a subsequent
message), the other party’s record of the partial or full run matches Alice’s record.

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|No.3(10)

92

• It is computationally infeasible for the exchanged key accepted by Alice to be recovered by
anyone other than Alice and possibly the party whose identity Alice accepted. (This condition does
not apply to authentication without key exchange.)
In addition to being secure, there are other desirable characteristics for a protocol.
•Perfect Forward Secrecy: is the property that disclosure of the long-term secret keying material
that is used to derive an agreed ephemeral key does not compromise the secrecy of agreed keys
from earlier runs.
•Direct Authentication: When authentication is established by the end of each protocol run, the
protocol is direct else it is indirect. An indirect protocol can be modified to be direct by adding an
exchange of known messages or messages with redundancy encrypted with the exchanged key.
•No Timestamps: While timestamps are convenient for administrative and documentation purposes,
it is desirable in practice to avoid relying on their use for security in authentication protocols.

3. Outline on Diffie-Hellman protocol
3.1. Diffie-Hellman principle
The Diffie-Hellman protocol [05] was invented in 1976. It enables two connected parties to
generate a shared secret without having any preliminary information about one another. Diffie-
Hellman is based on the public key cryptography because it uses public and private values. We will
show hereafter (fig.1) the different steps to share a secret by using Diffie-Hellman protocol:

(1)- The two communicants agree, first, on two integers e and d, such as: e is a big number, (e-
1)/2 is a prime value and d is primitive to e.

(2)- Party_1 chooses a number m to be able to calculate the public value M (M=dm mod e). In
the same way, the party_2 chooses a value n to have a public value N (N = dn mod e). These
two public values must be exchanged between the two connected parties.

(3)- Party_1, in order to have the shared secret must calculate : KMN (KMN = Nm mod e). In the
same way, party_2 has to calculate the shared secret : KNM (KNM = Mn mod e).

 The shared secret will be then: KMN = KNM = dmn mod e.
Henceforth, we will call DH parameters all values e, d, m, M, n, N, KMN and KNM.

3.2. Diffie-Hellman Vulnerability
Diffie Hellman problem is the interception (man-in-the-middle attack) that could occur in the phase
of exchange of Diffie-Hellman parameters M and N as showed in the following figure (fig.2) :

Party_1

(e,d)(1) (1)

M

N(2)

(2)

KMN KNM

(3) (3)

Party _2

Fig.1 : Diffie-Hellman principle

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|No.3(10)

93

(1)- The connected parties define initially their integer public values (e,d).
(2)- Party_1 chooses his internal secret value m to calculate the public value M (M = dm mod e)

that will send after to party_2. The interceptor receives this value and will calculate, by
using his internal secret value i, the corresponding shared secret: KIM = Mi mod e.

(3)- The interceptor calculates, by using his internal secret value i, the public value I (I=di mod
e) and will send it afterwards to party_2 instead of the intercepted value M. At the reception
of I, the party_2 will calculate, by using his internal secret value n, the corresponding shared
secret: KNI = In mod e.

(4)- Party_2 sends his value N (N = dn mod e) to party_1. The interceptor will intercept this
value to calculate the corresponding shared secret: KIN = Ni mod e.

(5)- The interceptor replaces N by I then sends it to party_1. Party_1 will calculate the
corresponding shared secret: KMI = Im mod e.

In short, the two connected parties have the impression to have the same shared secret (KMN=KNM),
but the problem is that each one of them shares a different secret with the interceptor. Thus, on one
hand, the interceptor shares with party_1 the secret KMI=KIM, and on another hand, the interceptor
shares with party_2 the secret KNI=KIN.
The interception constitutes a fundamental problem of Diffie-Hellman protocol. This work’s
objective is to prohibit any kind of Diffie-Hellman parameters interceptions by the use of a PKI
environment and Ponder policy specification language.

4. Ponder Policy Specification Language
Ponder [07] is an object-oriented, declarative language for specifying security and management
policies for distributed system. Ponder makes the policy-based management of distributed systems
easier by offering a greater flexibility thanks to its object-oriented properties.
The Ponder basic characteristics are:
- Access control specification which is based on the deployment of authorisation, delegation,

information filtering and refrain policies.
- Obligation policy specification to call upon managers to intervene when a special event occurs in

the system.
- Constraints specification to define the conditions under which the policy is valid.
- Composite policies specification to simplify the policy specification task for large distributed

systems.
For Ponder all subjects, targets and policies objects are organized in domains. A domain is very
similar to a directory or folder on a personal computer, and it is used to partition large systems
according to some precise criteria [12]. Domains make distributed systems management very easy
and flexible and give the possibility to modify the domains’ components without altering
management policies.

(e,d)(1) (1)

M N(3)(5)
KMI KNI

Interceptor

II

KIM KIN

(4)(2)

Party _1 Party_2

Fig.2: Principal of the interceptor attack

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|No.3(10)

94

The organisation in domains of our PKI environment is illustrated on the figure 3 :

The dynamic management of the PKI environment components such as users, materials, software
and responsibilities requires, as it is schematised in fig.3, the use of a root domain. This latter
allows to organize the PKI environment components in three main sub-domains : personal, System
and MgmtInfo.
In what follows, we will restrict our discussion on obligation policy. Obligation policy specifies
what activities a subject (members of one or several domains) must carry out on a set of target
objects (objects of one or several domains) and defines the duties of the policy subject. Obligation
policy is triggered by events and is normally interpreted by a manager agent at the subject. Events
can be internal, e.g., a timer event, or external events, which could be managed by a monitoring
service. The two possible syntaxes to specify an obligation policy are :

- Syntax for direct declaration of obligation policy instance :

The key word on specifies the required event. Subject and target are expressed in term of
domains. The optional catch-clause specifies an exception that is executed if the actions fail to
execute for some reason.

- Syntax for declaration and instantiation of authorization policy type :

The authorisation policy type is initially declarated, then instantiated.
Ponder is used in many works. Lymberopoulos et al. showed, in [13], how PONDER policies can
be implemented and validated for Differentiated Services (DiffSer) by using CIM (Common
Information Model) as the modeling framework for network resources as this device independent.
They also used, in [14], Ponder language to realize a dynamic adaptation of policies in response to
changes could occur within the managed environment. Finally, Damianou et al. presented, in [15],
the implementation of an integrated toolkit for the specification, deployment and management of

inst oblig policyName “ { “
on event-specification ;
Subject [<type>] domain-Scope-Expression ;
[Target [<type>] domain-Scope-Expression ;]
do obligation-action-list ;
[catch exception-specification ;]
[when constraint-Expression ;] ‘ ‘ } ’ ’

Type oblig policyType ‘ ‘ (‘ ’ formalParameters ‘ ‘)’ ’ “ { “ { obligationation–policy-parts } ‘ ‘ } ’ ’

inst oblig policyName= policyType ‘ ‘ (‘ ’ actualParameters ‘ ‘)’ ’ ;

root

SystemPersonal MgmtInfo

ResourcesServers Databases Policy

MSWeb

Fig.3: Organization of our PKI environment components

Simple_UsersResponsiblesManagers

PEPsPKIServ

DH_PEPs

PepAadbDHPolicyInfo

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|No.3(10)

95

policies specified in the PONDER language. Concerning our research group, we used Ponder to
specify a Virtual Laboratory security policies [16] and manage the distribution of IPSec security
policies [17].

5. Our approach
The objective of this work is to present a Keys’ dynamic management environment which circulates
no encoding/decoding information between connected parties in order to prohibit all interceptions
between them. Consequently, the Diffie-Hellman parameters will be policy-based managed.
In order to realize a dynamic management environment, we will integrate to this latter a monitoring
service which facilitates and automates its functioning.

5.1. Principle of the proposed PKI
Our approach is based on a security policy-based management environment (fig.4) and it consists in
discharging the users from all security management tasks as the management of the
encryption/decryption keys (generation, distribution and suppression of keys) and the management
of the security policy (modification of the policy parameters).

Both the management of the encryption/decryption keys and management of the security policy will
be dealt with at the level of a special environment. This environment is our public key infrastructure
(PKI) environment (fig.4) that manages automatically the security of the inter connected parties
communications. Thus, the PKI environment will calculate, modify, decide, and distribute the DH
security policy parameters to apply.
The PEPs of the users’ domains that secure the inter connected parties communications must
implement the encrypting/decrypting methods correspond to the DH security policy. Thus, when the
PKI environment decide the DH security policy parameters to apply, it places them at the disposal
of these PEPs (fig.4).
Concerning the implementation (fig.5), the PKI environment is composed of two basic components
which are a PKI Server (PKIServ) that contains the PDP to manage the inter-connected parties
communications security and a Monitoring Service (MS) to automate the PKIServ functioning :

PEP 1 ..

:::: ����

 PKI Server Monitoring Service

DataBases

ORB Bus

Fig.5: The mains actors of our approach

PEP 2 PEP N

Fig.4: Our proposed PKI environment.

PEP 2 PEP 1
Interconnecting

Network

Local Area Network 2

PKI Environment

Local Area Network 1

:::: ::::
Connected party 1Connected party 2

 : request of the security parameters.

 : reception of the security parameters.

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|No.3(10)

96

Moreover, the PKIServ is provided with two databases. The first one contains all necessary
information on the PKI environment (DHPolicyInfo.mdb) whereas the second contains the
necessary information on the PKI Environment PEPs (PEP Authentication and Authorization
DataBase : PepAadb.mdb).
5.2. Ponder Specification of the PKI environment Management Tasks
In order not to use durably the same DH security policy parameters (e,d,m,M,n,N and the shared
secret (KMN=KNM)) and give luck to others to discover our security parameters, we will proceed like
this:
We estimate for the DH parameters an application time (Tapp) which is lower than the necessary
time to discover them. Moreover, The content of the table DH_param of the database
DHPolicyInfo.mdb, which contains the DH security policy parameters, must be modify each Ttab

(Ttab = 5* Tapp).
The corresponding Ponder specifications are:

At each Ttab, the PKIServ receives, from the MS, the event EventModifyDHTable(). Then, it selects
firstly with a random manner ten new DH security policy parameters. Afterwards, it suppresses the
content of the table DH_param. Finally, The PKIServ registries these news parameters in the table
DH_param.
At the expiry of the applied DH parameters, i.e at each Tapp, the following obligation policy must
be triggered:

At the reception of the event EventChgtPolicyParam(), from the MS, the subject PKIServ selects
firstly with a random manner, from the Table DH_param of the database DHPolicyInfo, the DH
parameters to apply and stores them then in the variable DHPolicy_param. Afterwards, in order to
put these parameters in the disposal of the PEPs, they must be stored in the table PEPs_Needs of the
same database.

5.3. Implementation of the proposed PKI
In our implementation, the PKI environment is composed, as we already mentioned, of two basic
components which are the PKI Server (PKIServ) to manage the sinter connected parties
communications security and a Monitoring Service (MS) to automate the PKIServ functioning:
The communication MS-PKIServ and PEPs-PKIServ are all ensured through a ORB bus (CORBA
Objects)(fig.5) and they are all in the form of remote methods invocation. These invoked methods
are showed through the following idl file :

inst oblig PolicyChangeDHTable {
 on EventModifyDHTable() ;
 Subject System/Resources/Servers/PKIServ ;
 Target t = MgmtInfo/Databases/ DHPolicyInfo.mdb ;
 do param[]= selectDHParam() −> supp(t.DH_param)

 registry(t.DH_param, param[]) ;

inst oblig PolicyChangeDHParam {
 on EventChgtPolicyParam() ;
 Subject s = System/Resources/Servers/PKIServ ;
 Target t = MgmtInfo/Databases/DHPolicyInfo.mdb ;
 do DHPolicy_param[]= selectParam(t.DH_param)

 −> registry(t.PEPs_Needs,DHPolicy_param[]) ;

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|No.3(10)

97

Because of the PKI environment databases (DHPolicyInfo.mdb and PepAadb.mdb) contain static
tables, the permanent change of these tables’ contents will be essential to do not give to others the
opportunity to discover our security parameters. Consequently, a dynamic management of these
databases will be important. To automate the management of the entirely PKI environment, we
integrated in this latter, as we already mentioned, a monitoring service.
5.3.1. Communication inter PKI Server-Monitoring Service :
Firstly, we remember that the parameters of the DH security policy (e,d,m,M,n,M, shared secret
(KMN=KNM)) are stored in the tables DH_param of the database DHPolicyInfo.mdb.
In our implementation, we defined two types of the inter MS-PKIServ communications (fig.6)
where each one of them has its own reasons to be.
i . Change of the applied policy parameters
At the expiry of the application time (Tapp) of the applied parameters, the MS invokes at the level of
PKIServ the method changeDHPolicyParam() (fig.6). This method selects randomly through its
sub-method selectDHPolicyParam() (fig.7), from the table DH_param, the new DH parameters to
apply:

ii. Change of the content of the DH policy parameters table
In order to modify permanently the contents of the static table DH_param, the MS invokes at the
level of PKIServ, at each Ttab, the method modifyDHParamTable() (fig.6). This method changes
dynamically the content of the table DH_param. The corresponding implementation is:

module PkiServ {

// Interface of methods invoked by the Monitoring Service:
 interface PkiServ_MS {
 oneway void changeDHPolicyParam();
 oneway void modifyDHParamTable();
 } ;

// Interface of methods invoked by the PEPs:
 interface PkiServ_PEPs {
 string getDHPolicyParam(in string pep_id, in string pep_passwd, in string pep_secret);
 } ;
} ;

Fig.6: The idl file (PkiMgmt.idl).

…… //program
public void modifyDHParamTable() {
 changeDHParamTable(); \\ Method to change the DH_param Table contents.
}
… // program.

Fig.8: Implementation of the method modifyDHParamTable()

……… // Program
public void changeDHPolicyParam(){
 DHPolicy_param=selectDHPolicyParam();
 }
…….. // Program

Fig.7: Implementation of the method changeDHPolicyParam()

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|No.3(10)

98

The sub-method changeDHParamTable() (fig.8) removes the contents of the table DH_param and
records afterwards in it ten new recordings.
5.3.2. Communication PKI Server-PEPs
All the PEPs of our PKIServ implement the encrypting/decrypting methods corresponding to the
DH security policy. These PEPs call periodically the PKIServ through the invocation of the method
getDHPolicyParam() (fig.6) to get the security parameters to apply (DH security Policy
parameters). The period of the invocation of the method getDHPolicyParam() must be too lower
than the average time of the change of the DH security policy parameters.
The arguments of the method getDHPolicyParam() (fig.6) are the PEP identifier, the PEP password
and a secret to reinforce the security. In this context, we could also use certificates to reinforce
communications security [18].
The implementation of the method getDHPolicyParam() is :

The PKIServ checks firstly the PEP identity through the method authentication() (fig.9) and checks
afterwards the PEP authorization through the method authorization() (fig.9). The checking of both
PEP authentication and PEP authorization is based on the consultation of the table PEPs_info
(fig.10) of the database PepAadb.mdb.

……… // program
public String getDHPolicyParam(String peplogin, String peppasswd, String pepsec){

 boolean evalauthen, evalauthor;
 evalauthen = authentication(peplogin,peppasswd);
 evalauthor = authorization(peppasswd,pepsec);
 String resp="";

 if(evalauthen == true){
 if (evalauthor == true) { resp = getSecParam();}
 else { resp = "Warning : Unauthorized PEP";}
 }
 else { resp = "Warning : Failed Authentication ";}

 return resp;

 } // End of the method getDHPolicyParam().
……… // program

Fig.9: Implementation of the method getDHPolicyParam

Fig.10 : Table PEPs_info

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|No.3(10)

99

5.4. Scenario of execution
As we previously explained, the method modifyDHParamTable() permits to change the content of
the static table DH_param of the database DHPolicyInfo.mdb which contains the parameters of the
DH security policy. An example of the invocation of this method gave us the following result:

All our next examples and executions will be based on the current contents of this table.
In order to change de policy parameters, the MS invokes, at each Tapp, the method
changeDHPolicyParam(). Moreover, for each change of the DH security policy parameters, the
PKIServ stores these new parameters in the variable DHPolicy_param and registries them
afterwards in the table PEPs_Needs of the database DHPolicyInfo.mbd. Practically, the execution of
these operations gave us:

Concerning the PEPs, they get the security parameters to apply through a simple invocation of the
method geDHPolicyParam(). In the reception of this invocation, the PKIServ consults initially the
table PEPs_info (fig.10) of the database PepAadb.mdb to check the identity and the authorization of
the corresponding PEP. The possible replies that could receive the PEPs are :
- Failed Authentication or Failed Authorization : They correspond respectively to the case where the
PEP is not declared at the level of the table PEPs_info (fig.12) and to the case where the PEP is
declared in the table PEPs_info but it is not authorized to use the PKI environment. An example of
these two replies is given through the following figures :

- Correct Authentication and Authorization : If the PEP is declared and authorized at the level of
our PKIServ, this latter gives it the security parameters to apply which are stored in the table
PEPs_Needs of the database DHPolicyInfo.mbd. In our example, we invoked the method

Fig.13: Failed authentication and failed Authorization replies

Fig.11: Modification of the content of the table DH_param through
 the method modifyDHParamTable()

Fig.12: The result of the method selectDHPolicyParam() and the content
 of the variable DHPolicyParam

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|No.3(10)

100

getDHPolicyParam() with a correct authentication/authorization arguments and the obtained result
is :

6. Evaluation of our work
DH protocol is used in many mutual authentication and key exchange protocols that are
characterized by their imposed prerequisites (preliminary shared secret, public key infrastructure)
and verified properties (direct authentication, PFS).
In this section, we present three mutual authentication and key exchange protocols that are used on
IP Networks. They are DH-based protocols and characterized by the employ of public values
authentication to generate shared secret. On one hand, they either use authenticated public values
through certificates or authenticate public values after having exchanged them. On other hand, they
are either connection oriented protocols or connectionless protocols:
- If the protocol is connection oriented, it will need a protocol of establishment of authenticated
session key before the communication and the resulting key is then used to secure the IP traffic.
Because of IP protocol is connectionless, the establishment and management of a pseudo session
layer under IP constitute a main disadvantage of this solution.
- If the protocol is connectionless, the management of stateless keys is essential and then any
connection is required. This approach consists in transmitting the key used to cipher the packet in
the packet itself. The disadvantage of this approach is the add of data to each transmitted packet.
SKIP (Simple Key management for Internet Protocols) protocol [19], which is a connectionless
protocol, is integrated on IP level. SKIP does not require any preliminary messages exchange before
sending a ciphered packet because each packet transports the necessary information to be
deciphered later. It is also based on the generation of DH shared secret with authenticated public
values.
SKIP uses DH 1024 bit public key based authentication algorithms for long term key (shared
secret). This shared secret is then used to derive a secret key (40 to 256 bits) for ciphering keys.
Concerning the keys exchange, the secret key is used to cipher a session key (packet key) that is
afterwards employed to manage two keys; a packet ciphering key and a packet authentication key.
Skip does not provide the PFS property. Indeed, if the secret key is discovered, the whole of the
used session keys will be compromised. However, the SKIP extension (SKIP PFS) provides this
property.
Photuris protocol [20][21] is an connection oriented protocol that requires preliminary exchanges
before each ciphered message transmission. Photuris is based on the generation of a DH shared
secret of a weak lifetime. This secret is used to generate the necessary session keys to protect the
coming exchanges.
To prohibit the interception problem, Photuris authenticates, using a short term secret, the values
used to generate the shared secret after their exchange. Therefore, Photuris provides the PFS
property. Photuris introduces also the concept of cookies to forbid certain denial of service attacks.
This protocol comprises three phases [09] : cookies exchanges like mechanism to counter attacks,
and public values and identities exchanges.
Oakley protocol [22] proposes several distinct modes of keys exchange, uses Photuris cookies
mechanisms, and does not require any DH shared secret calculation before the protocol end. It is
distinguished from the other protocols by the fact that it explicitly allows third parties to agree with
each other on the keys exchange mechanisms, cipher and authentication.
In sum, the main properties of these three protocols could be summarised in the following table:

Fig.14: Result obtained by a correct invocation of the method getDHPolicyParam()

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|No.3(10)

101

Protocol Connection oriented PFS property prerequisites Secret lifetime
SKIP no No

Yes(SKIP PFS)
No long

Photuris yes Yes Yes weak
Oakley yes Yes No -

Table1 : The main properties of SKIP, Photuris, and Oakley protocols

Concerning our approach, it preserved the main DH protocol characteristic with the fact that the
majority of the key management tasks are dynamically dealt with on the level of a PKI
environment. Our approach avoids the preliminary exchange of security information which is at the
origin of all attacks and threats and also replaces the security information exchange by an automatic
management based on the methods invocation that work on behalf of connected parties. The secret
lifetime strongly depends on the period of the invocation of the PKI Server by the MS. This
invocation is realized through the method changeDHPolicyParam() (fig.6) that changes the
applied DH parameters. This management task means that our approach could easily provide the
PFS property.
Concerning the authentication, it is assured trough the method getDHPolicyParam() of the
interface PkiServ_PEPs (fig.6) that requires, as argument, the PEP identidier and password plus an
authentication secret.
Moreover, our approach could be generalized to manage the inter-domain communications security
and could be also opened on the environment security users [23]. The opening on the users means
that the latter could establish automatically secured channels between them and they could also
apply their desired security parameters.

7. Conclusion
The objective of our work was the presentation of an approach to solve the Diffie-Hellman
vulnerability problem by preventing the interceptions between the connected parties. Our approach
is based on the idea not to leave any encoding/decoding information circulate between connected
parties and also to treat all actions that the connected parties used to do on Diffie-Hellman
parameters at the level of a Keys’ management environment. This environment decides and applies,
in an intelligent and dynamic way, the Diffie-Hellman parameters.
Solutions of the Diffie-Hellman vulnerability problem were also brought by other approaches but
the problem is that they continue to exchange security information between the connected parties by
increasing the security level and improving the used mechanisms. However, the fact of continuing
to exchange the security information between the connected parties could constitute a future threats
of all these solutions.
The improvement of our work will be based on two main ideas. The first one will consist in
extending our approach to support other asymmetric algorithms and symmetric cryptography
whereas the second one will consist in using this final resulted solution to secure the inter-domain
communications.

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|No.3(10)

102

8. References
1. S. Kent, R. Atkinson. Security Architecture for the Internet Protocol. RFC 2401, November 1998.
2. S. Kent, and R. Atkinson. IP Authentication Header. RFC 2402, November 1998.
3. S. Kent, R. Atkinson. IP Encapsulating Security Payload (ESP). RFC 2406, November 1998.
4. D. Piper. The Internet IP Security Domain of Interpretation for ISAKMP. RFC 2407, November 1998.
5. W. Diffie, M.E. Hellman. New directions in cryptography, IEEE Transactions on Information Theory,

IT-22, 1976, pp.644-654.
6. R. Yavatkar, D. Pendarakis, R. Guerin, A Framework for Policy-based Admission Control, RFC

2753,January 2000
7. N. Damianou, N. Dulay, E. Lupu, M. Sloman, The Ponder Policy Specification language, Proc. Policy

2001, International Workshop on Policies for Distributed Systems and Networks, Bristol, United
Kingdom, January 29-31,2001.

8. hsc: http://www.hsc.fr/ressources/articles/ipsec-tech/, last update : 23 October 2002.
9. SSH Communications Security: http://www.ssh.com/support/cryptography/introduction/

terminology.html, Last update: 2006.
10. Siaw-Lynn Ng and Chris Mitchell. Comments on mutual authentication and key exchange protocols for

low power wireless communications. IEEE COMMUNICATIONS LETTERS, 2003.
11. Diffie Whitfield, Van Oorschot Paul C., Wiener Michael J.. Authentication and authenticated Key

Echanges, Designs, Codes and Cryptography. 2, Kluwer Academic Publishers, Mars 1992, pp. 107-125.
12. M.S. Sloman. Policy Driven Management for Distributed Systems. Journal of Network and Systems

Management,2(4),Plenum Press,1994, pp. 333-360.
13. L. Lymberopoulos, E. Lupu, M. Sloman, PONDER Policy Implementation and Validation in a CIM and

Differentiated Services Framework, 9th IEEE/IFIP Network Operations and Management Symposium
(NOMS 2004), Seoul, Korea, May 2004.

14. L. Lymberopoulos, E. Lupu, M. Sloman. An Adaptive Policy-Based Framework for Network Services
Management. Journal of Network and Systems Management, September 2003. Vol.11, No.3, pp. 277-
303.

15. N. Damianou, N. Dulay, E.C. Lupu, M. Sloman. Tools for Domain-Based Management of Distributed
Systems. IEEE/IFIP Network operations and management symposium (NOMS2002), Florence,Italy,15-
19 April 2002, pp. 213-218.

16. A. Sekkaki, M. El Hamzaoui, and B. Bensassi. Policy-based Management of a Virtual Laboratory
Communications Security. in: Proc. The First IEEE International Workshop on Broadband Convergence
Networks (BCN2006), Vancouver, Canada, April 7, 2006, pp.199-204.

17. M. El Hamzaoui, A. Sekkaki, B. Bensassi. Infrastructure to manage the Distribution of IPSec Security
Policies. in: Proc. GRES’2006 - Gestion de REseau et de Service, 7ème Colloque Francophone,
Bordeaux-France, 09-12 May 2006, pp. 315-326.

18. C.B. Westphall, A. Sekkaki, L.M. Alvarez, W.T. Watanabe. Extending TINA Secure On- Line
Accounting Services. Journal of Network and Systems Management (JNSM), December 2003, Vol.11,
No.4.

19. G. Montenegro, V. Gupta. Sun’s SKIP Firewall Traversal for Mobile IP. RFC 2356, June 1998.
20. W.A. Simpson, Karn Phil. Photuris: Session-Key Management Protocol. RFC 2522, Mars 1999.
21. W.A. Simpson, Karn Phil, Photuris: Extended Schemes and Attributes, RFC 2523, Mars 1999.
22. H. Orman, The OAKLEY Key Determination Protocol, RFC 2412, November 1998.
23. M. El Hamzaoui, A. Sekkaki, B. Bensassi, Policy-Based Management of the inter-Domain

communications Security, IEEE/IFIP 4th Latin American Network Operations and Management
Symposium (LANOMS), Porto Alegre, Brazil, 29-31 August 2005, pp. 269-274.

Article received: 2006-06-13

