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Abstract:
In Multichannel blind deconvolution (MBD) the goal is to calculate possibly scaled

and delayed estimates of the source signals from their convolutive mixtures, using
approximate knowledge of the source characteristics only. Nearly all of the solutions to
MBD proposed so far require from the source signals to be pair-wise statistically
independent and to be timely correlated. In practice, this can only be satisfied by
specific, synthetic signals.

In this paper we propose (MDB) algorithm which can recover convolution of sub-
and super- Gaussian source image signals with self-adaptive nonlinearity. The MBD
algorithm in the framework of natural Riemannian gradient is derived using the
parameterized Generalized Gamma density model. The nonlinear function in MBD
algorithm is self-adaptive and is controlled by the shape parameters of generalized
gamma density model. Computer simulation results confirm the validity and high
performance of the proposed algorithm. Implementation tests on real 2-D images are
documented.

Keywords: Multichannel Blind source deconvolution, image processing, Generalized
gaussian.

1. Introduction:
In speech and image recognition systems (which are based on the pattern recognition theory)

the first processing step is to process the sensor data in such a way, that the useful original source
patterns are extracted without noise and disruption. The applied methods give satisfactory results if
the characteristics of the disruption or source characteristics are properly predicted. But methods are
needed, that can automatically adjust to the sensor signal. One possible way of seeking general
solutions to source extraction lies in the increase of sensors (e.g. microphones or camera views) and
the processing of a combined sensor signals (containing given pattern) at the same time. Typical
blind source separation (BSS) methods seek separation when the mixing process is unknown.
However, loose prior knowledge regarding the mixing process often exists, due to its physical
origin. In particular, this process can be represented by a parametric form, rather than a trivial
representation of raw numbers. For example, consider convolutive image mixtures caused by
defocus blur. This blur can be parameterized, yet the parameters’  values are unknown. Such
mixtures occur in tomography and microscopy [11, 7]. They also occur in semi-reflections [11],
e.g., from a glass window: a scene imaged behind the semireflector is superimposed on a reflected
scene [12, 3]. Each scene is at a different distance from the camera, thus differently defocus blurred
in the mixtures. We claim that BSS can benefit from such a parameterization, as it makes the
estimation more efficient while helping to alleviate ambiguities. In the case of semireflections, our
goal is to decompose the mixed and blurred images into the separate scene layers, by minimizing the mutual
information (MI) of the estimated objects. An attempt by Ref. [11] used exhaustive search, hence being
computationally prohibitive. Ref. [4] attempted convolutive image separation by minimization of
higher order cumulate. That method suffers from a scale ambiguity: the sources are reconstructed
up to an unknown filter. Moreover, the method’s complexity increases fast with the support of the
separation kernel. The complexity of convolutive source separation has been reduced in the domain
of acoustic signals, by using frequency methods [10, 13]. There, BSS is decomposed into several
small point-wise problems by applying a short-time-Fourier transform (STFT). Then, standard BSS
tools are applied to each of the STFT channels. However, these tools suffer from fundamental
ambiguities, which may reduce the overall separation quality. Ref. [6] suggested that these
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ambiguities could be overcome by nonlinear operations in the image domain. However, this method
encountered performance problems when simulated over natural images. We show that these
problems can be efficiently solved by exploiting a parametric model for the unknown blur.
Moreover, we use Z-transform at unit circle (sparsity of STFT) coefficients to yield a practically
unique solution, which is derived fast. The algorithm is demonstrated in simulations of semi-
reflected natural scenes.

2. Fundamental Models and Assumptions
Let us consider a multichannel, linear time invariant (LTI), discrete-time dynamical systems
described in the most general form as
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where pH  is an m x n n-dimensional matrix of mixing coefficient at time-lag p (called the impulse

response at time-lag p) and s(k) is an n-dimensional vector of source signals with mutually
independent components. It should be noted that the casuality in time domain is satisfied only when

0=pH for all p<0. In most general case, we attempt to estimate the sources by employing an other

multichannel, LTI, discrete-time, stable dynamical system described as
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where T
n kykykyky )](),...,(),([)( 21=  is an n-dimensional vector of the outputs and pW  is an n x

m-dimensional coefficient matrix at time lag p. We use the operator form notation
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In practical applications, we need to implement the blind deconvolution problem with a finite
impulse response (FIR) multichannel filter with matrix transfer function
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or apply a non-causal (double-finite) feed forward multichannel filter
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where K and L are two given positive integers. The global transfer function is defined by
)()()( zHzWzG =                                                      (7)

In order to insure that the mixing system is recoverable, we put the following constraints on the
convolutive/mixing systems.

1. the filter H(z) is stable, i.e., its impulse response satisfies the absolute summability condition
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where 
2

.  denotes the Euclidean norm.

2. The filter matrix transfer function H (z) is full rank on the unit circle ( 1=z ), that is , it has

no zero on the unit circle.
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3. Separation Deconvolution Criteria

 The blind deconvolution task is to find a matrix transfer function W(z) such that

    )()()()( zDPzHzWzG Λ==                                          (9)

where nnxRP ∈ is a permutation matrix nnxR∈Λ  is a nonsingular diagonal-scaling matrix, and
the diagonal matrix )}(),...,({)( 1 zDzDdiagzD n=  represent a bank of arbitrary stable filters

with transfer functions � −=
p

p
ipi zdzD )( . In other words, the objective of multichannel blind

deconvolution, in most general case, is to recover the source vector s(k) from the observation
vector x(k), up to possible scaled, reordered, and filtered estimates. However if we assume that
sources are i.i.d, then we can relax the conditions to the form:

                                    )()()()( 0 zDPzHzWzG Λ==                                          (10)

where } .,....,{)( 1
0

nzzdiagzD ∆−∆−= In such case, the original source signals can be

reconstructed up to arbitrary scaled, reordered, and delayed estimates. In other words, we can
preserve their waveforms exactly. For some models it is difficult or even impossible to find an
exact inverse of the channels in the scenes described above, since no knowledge of the channel
and the source signals is available in advance. Hence, instead of finding an inverse
decomposition (9) or (10) in one step, we often attempt to find a matrix W(z) that satisfies the
generalized zero-forcing (ZF) condition given by

                                     ),()()()( 0 zDzHzWzG Γ==                                          (11)

where Γ  is an n x n nonsingular memoryless ( constant) mixtures matrix and
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3.1 Multichannel blind deconvolution in the frequency domain
The simplest idea of extending the blind source separation and ICA algorithms to multichannel
blind deconvolution is to use the frequency domain techniques. A convolutive mixture in the
time domain corresponds to an instantaneous mixture of complex-valued signals and parameters
in the frequency domain [2, 9, and 8]. An n-point windowed DFT (Discrete Fourier Transform)
is used to convert time domain signals )(kxi into frequency domain complex-valued-time-series

signals:
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where win denotes a window function and ∆ is the shift interval of the window. The number of
frequency bins is equal to the frame length N and it is correspond to the length of FIR filters of
the deconvolutive system. By using the fourier transform the convolutive and deconvolutive
models are represented by
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3.2 Cost function for MBD

To describe the ICA optimization denotes )(ωW as the separation matrix at the channel ω . In
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sources at the channel ω , respectively. Then, the MI of the estimated sources at each channel is
given by
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where 
ω

skH
^

 is the estimator of the channel entropy of an estimated source. Hence using the
factorization MI minimization of a convolutive mixture is expected to be both more accurate
and more efficient to obtain.

4.  Natural Riemannian Gradient in Orthogonality Constraint

Natural Rienmannian gradient in orthogonality constraint has been recently proposed by Amari [1].
Let us assume that the observation vector X(t) has already been whitened by preprocessing and
source signals are normalized i.e.,

                                 m
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from (16), (17), we have
           n
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the m row vectors of A are orthogonal n dimensional unit vectors. The set of n dimensional
subspaces in nR  is called stifle manifold. The natural Riemann gradient in the stifle manifold was
calculated by Amari [1]
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Using this result the natural gradient is given by
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then the learning  algorithm is given by
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4.1 Natural Riemannian Gradient in Orthogonality Constraint in Frequency Domain
Similar to equation (21) we can write the natural Riemannian in Orthogonality Constraint in
Frequency domain by the following equation
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Where Y(z) and X(z), W(z) are defined by equations (1), (2) and (3) respectively

5.  GENERALIZED GAUSSIAN SOURCE MODEL

A generalized exponential source model is introduced in [5]. This model encompasses both super-
and sub-Gaussian sources. The generalized gaussian density is expressed
as follows:
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The parameter qr  can change from zero to, through 1 (the replace distribution) and qr =2

(standard Gaussian distribution), to qr going to infinity (for uniform distribution).

6. Simulation algorithm

1.Start with some initial point W(z,k=0) in the multi-dimensional parameter space
2. Obtain the gradient value )),(( kzWJ∇
3.Compute the value W(z,k+1) by moving from W(z,k) along the gradient descent, i.e. along -

)),(( kzWJ∇
 )),(()(),()1,( kzWJkkzWkzW ∇−=+ η
4. Test the stability of the parameters, i.e. if θ<−+ ),()1,( kzWkzW  (threshold)

7. COMPUTER SIMULATION RESULTS

Example 1:

Consider the system involving the following three independent sources
)(1 nU =a square wave of amplitude a, and fundamental frequency w0

)(2 nU = a triangular wave of amplitude, and fundamental frequency w0

)30cos()400sin(1.0)(3 nnnU = (23)

The mixing matrix A is
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48.032.017.0

86.065.075.0

37.079.056.0

A (24)

The algorithm was implemented using the following conditions:
• Initialization. The weights in the demixing matrix W were picked from a random

number generator with a uniform distribution inside the range [0.0,0.5].
• The learning rate parameter was fixed at 1.0=η
• Signal duration. The time series produced at the mixer output had a sampling period

10-4s and contained N =65,000 samples.

Figure (4) displays the waveforms of the source signals and the signals produced at the output of
the demixer. It can be observed those after 3000 iterations; source signals are well separated
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Example 2:
The approach described in our paper was implemented in matlab and it was tested on some
examples of image sources (Fig. 2.). The result of the blind source deconvolution process
applied to the mixtures of these images is shown in Fig. 2. as well.

Figure 2: the source signals, the convolution signals and the deconvolution outputs

Conclusion
In this paper we propose and test a new approach to the blind deconvolution via the multiple
BSS in frequency domain space we avoid the permutation and scaling problems which are
common difficulties of the deconvolution approaches in the frequency domain. Our approach
depends on generalized gaussian density function, which is suitable for sub-gaussian and super-
gaussian signals. Finally we apply our algorithm on a mixture of natural images, which give a
good results.
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