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Abstract
The development of the applications related to several fields of image processing  

requires the use of telecommunication and information technologies which evolved very  
quickly these last years. The compression and the encoding of data are two techniques  
whose importance believes in an exponential way in a myriad of applications. 

The use of the data-processing networks, for the transmission and the transfer of  
the  data,  must  satisfy  two  objectives  which  are:  the  reduction  of  the  volume  of  
information to free, the maximum possible, the public networks of communication, and  
the protection in order to guarantee a level of optimum safety. 

For this  we have proposed a new hybrid approach of encryption-compression,  
which is  based on  the  DES encryption  algorithm of  the  dominant  coefficients,  in  a  
mixed-scale representation, of compression by the multi-scale transformation of Faber-
Schauder.  The  comparison  of  this  approach  with  other  methods  of  encryption-
compression,  such  as  DCT-RSA  and  DCT-Partial-encryption,  showed  its  good  
performance.

Keywords: Compression of images, Encryption, Multi-scale Base of Faber-Schauder,  
Encryption- Compression, Mixed Visualisation, PSNR, Entropy. 

1. Introduction
The transmission and the transfer of images, in free spaces and on lines, are actually still not 

well protected. The standard techniques of encoding are not appropriate for the particular case of 
the images.

The best would be to be able to apply asymmetrical systems of encoding so as not to have a 
key to transfer. Because of the knowledge of the public key, the asymmetrical systems are very 
expensive  in  calculation,  and  thus  a  protected  transfer  of  images  cannot  be  envisaged.  The 
symmetrical algorithms impose the transfer of the secrete key. The traditional methods of encoding 
images impose the transfer of the secret key by another channel or another means of communication 
[1,2].

The encryption algorithms per blocks applied to the images present two disadvantages: on the 
one hand, when the image contains homogeneous zones, all the identical blocks remain identical 
after the coding. For this, the encrypted image contains textured zones and the entropy of the image 
is not maximal. In addition, the techniques of encryption per blocks are not resistant to the noise. In 
fact, an error on a coded bit will propagate important errors on the running blocks entirely. The 
traditional methods encryption-compression have all tendencies to carry out techniques of encoding 
and    compression  in  a  disjoined  way;  this  causes  a  problem  during  the  decoding   and  the 
decompression stages, especially in the case of some application domains of real  time type like the 
emission of images by satellites or the telemedicine where time is a paramount factor.

For a protected and reduced transfer of images, the algorithms of encoding images must be 
able to be combined with the algorithms of compression of images. The techniques of compression 
seek the redundancies contained in the images in order to reduce the quantity of information. On the 
other hand, the techniques of encryption aim to remove all the redundancies to avoid the statistical 
attacks, which is the famous problem.
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In  many  methods  of  compression  of  images  in  grey  level,  the  principal  idea  consists  in 
transforming them so as to concentrate the piece of information (or the energy) the image in a small 
number of pixels. In general, the linear transformations are preferred because they allow for an 
analytic study. Among the most used transformations, we can quote that of the cosine which is at 
the base of the standard of JPEG compression [10].

The multi-scales transformations make it possible to take into account, at the same time, the 
great structures and the small details contained in an image; and from this point of view, they have 
similarities with the human visual system [11]. Laplacian pyramid algorithm of Burt-Adelson was 
the first example known, but it suffers in particular from the redundancy of the representation of 
data after transformation.

Mallat  used  the  analysis  of  the  wavelets  to  develop  a  fast  algorithm  of  multi-scales 
transformation of images which has same philosophy as the diagram of the laplacian pyramid, but it 
is most effective

In  this  paper,  we  present  the  Faber-schauder  Multi-scales  Transformation  (FMT),  which 
carries out a change of the canonical base towards that of Faber-Schauder. We use an algorithm of 
transformation (and reverse transformation), which is fast and exact. Then, we present a method of 
visualization at mixed scales which makes it possible to observe, on only one image, the effect of 
the transformation. We notice a concentration of coefficients around the outline areas, and this is 
confirmed by the particular aspect of the histogram. If we encrypt only his significant coefficients 
we will only have a small disruption of the multi-scale image and, with a good conditioning, we 
will be able to decipher and rebuild the initial image without a big debasement.

In what follows, we describe the basic multi-scale construction of Faber-Schauder and we 
focus on the algorithm of transformation and reverse transformation. Then, we introduce the mixed-
scale  visualization  of  the  transformed  images  and  its  properties.  Then,  we  speak  about  the 
compression of images by the FMT, and we explain the encryption algorithms (DES). Lastly, we 
finish by the general diagram of the hybrid method of the introduced encryption-compression and 
the results found, after the application and comparison with the methods DCT-RSA and the DCT-
Partial encryption.

2. Methods  
2.1. The Faber-schauder multi-scale transformation

2.1.1. Construction of the Faber-Schauder multi-scale base

The multi-resolution analysis (11) of )(2 RL  is composed of vector spaces ( jV ) of the linear 

continuous functions per pieces on the intervals [ ]( )Zk
jj kk ∈+ 2)1(,2  such as:
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For a D2  signal, a multi-resolution analysis of )(2 RL  can be built from the tensorial products 

of  spaces  jV  :  jV =  jV  ×  jV ,  and  the  canonical  base  of  jV  are  given  by: 

.
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The images are also sequences of numbers 
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of pixels. An image can be then associated with function f of 0V  given by: 
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And  the  unconditional  base  and  Faber-Schauder  multi-scale  of  )( 22 RL  is  given  by: 
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The continuation 
1f  is a coarse version of the original image 

0f ( a polygonal approximation 

of 
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0f and
1f . 
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the diagonal represents difference for the two variables.

The continuations
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1g  can be calculated starting from 
0f  in the following way:
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Reciprocally one can rebuild the continuation 
0f  from 

1f  and 
1g  by :
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We  thus  obtain  a  pyramidal  algorithm  which,  on  each  scale  j,  decompose  (respectively 

reconstructed) the continuation 
jf  in (respectively from) 

1+jf and
1+jg . The number of operations 

used in the algorithm is proportional to the number N of data, which is not invalid in the signal 
))(( NO  what  makes  of  it  a  very  fast  algorithm.  What  is  more,  the  operations  contain  only 

arithmetic numbers; therefore, the transformation is exact and does not produce any approximation 
in its numerical implementation [4].

The FMT Transformation has exactly the same principle of construction as that of Mallat 
except that the canonical base of the multi-resolution analysis is not an orthogonal base. This does 
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not  prevent  it  from having  the  same properties  in  image processing  as  the  wavelets  bases.  In 
addition, the FMT algorithm is closer to that of the laplacian pyramid, because it is very simple and 
completely discrete,  what  makes it  possible to observe directly on the pixels the effects  of the 
transformation. In short, the FMT transformation is a good compromise between the wavelets bases 
and the diagram of the laplacian pyramid [4].

2.1.2. Visualization of the transformed images by the FMT 
The result of the wavelets transformation of an image is represented by a pyramidal sequence 

of images, which includes the differences in information between the successive scales (figure 1). 
However, we can consider the FMT multi-scale transformation as a linear application, from the 
canonical base to the multi-scale base, which distributes the information contained in the initial 
image in a different way. It is thus more natural to visualize this redistribution, in the multi-scale 
base, in only one image, as it is the case in the canonical base. The principle of the visualization of 
images  in  the  canonical  base  consists  in  placing  each  coefficient  at  the  place  where  its  basic 
function reaches its maximum. The same principle is naturally essential for the multi-scale base 
(Figure 2) [4].

The  image  obtained  is  a  coherent  one  which  resembles  an  outline  representation  of  the 
original image (Figure 3). Indeed, the FMT transformation, like some wavelets transformation, has 
similarities  with  the  canny  outlines  detector  [9],  where  the  outlines  correspond  to  the  local 
maximum in the module of transformation. In fact, in the case of the FMT transformation, on each 
scale, the value of each pixel is given by the calculation of the difference with its neighbouring of 
the preceding scale. Thus the areas which present a local peak for these differences correspond to a 
strong luminous transition for  the values  of  grey,  while  the areas,  where those  differences  are 
invalid, are associated with an area, where the level of grey is constant [8]. 
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Figure 1: Representation on separated scales for 9×9 transformed image in the multi-scale base.
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Figure 2: Representation on mixed scales, the coefficients are placed at the place where their basic functions are maximal.
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                                                                                      (a)                                               (b)

   
                                                                                      (c)                                                 (d)

Figure 3: Representation on mixed-scales (at the bottom) and on separate scales (at the top) of the image "Lena". 
Thecoefficients are in the canonical base in (a) and (c) and in the Faber-Schauder multi-scale base in (b) and (d).

2.1.3. Compression of images by FMT
We noted that the FMT transformation of the images gives, by the means of visualization on 

mixed scales, a good description of the outlines of the image. In fact, the result is more than only 
one image of the outlines because it contains exactly same information as that of the initial image 
and we can even find the original image by the reverse transformation. This leads us to raise the 
question  to  know  if  these  multi-scale  coefficients  of  the  outline  areas  characterize  the  image 
completely. Theoretically, the answer is negative. Indeed, there are, in the case of the continuous 
wavelets  transformations,  some  counter-examples  of  different  functions  which  have  the  same 
outline points in their wavelet transformation [9]. Hence, we can only wish that the introduced 
debasement, if we do not hold account of the outline regions, remain unperceivable in the rebuilt 
image.

A worthwhile  priority over  the FMT transformation,  which is  also valid  for the wavelets 
transformations, is the characteristic aspect observed in the histograms of transformed images: the 
number of coefficients for a given level of grey decreases very quickly, to practically fade away, 
when we move away from any central value very close to zero (figure 4). This implies that the 
information  (or  the  energy)  of  the  transformed  image  is  concentrated  in  a  small  number  of 
significant  coefficients,  confined  in  the  outline  region  of  the  initial  image.  Therefore,  the 
cancellation of  other  coefficients  (almost  faded away)  only provokes  a  small  disruption of  the 
transformed image. In order to know the effect of such disruption in the reconstruction of the initial 
image one should calculate the matrix conditioning of the FMT transformation. In fact, if we have f 
= Mg where f  is  the initial  image and g is  the multi-scale  image,  then the conditioning of M 
(Cond(M) = ||M||.||M-1|| ≥ 1) who checks : ||df||/||f|| ≤ Cond(M) ||dg||/||g||. This means that the relative 
variation of the restored image cannot be very important, with reference to the multi-scale image, if 
the conditioning is closer to 1 [4].

   
                                                                                       (a)                                                    (b)

Figure 4: Histograms of image « Lena »: (a) in the canonical base, (b) in the multi-scale base.
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For the orthonormal transformations, the conditioning is always equal to 1; thus it is optimum. 
However, we can always improve the conditioning if we are able to multiply each column (or each 
line)  by  a  well  chosen  scalar;  in  the  case  of  a  base  changing,  this  pushes  a  change  in  the 
normalization of the base elements.

The obtained results (Figure 4) confirm that, in this case too, we get a good conditioning. 
Most generally, we have verified that we can practically eliminate between 90% and 99% of the 
multi-scale coefficients, without any remarkable debasement of the reconstructed image, and with a 
good ratio of noise signal (PSNR).  The results  are, obviously preferable,  when they are not so 
textured.

The Mean Square Error (MSE) and the Peak Signal to Noise Ratio (PSNR) are mathematical 
measures which need the original image, before the compression, in order to measure the distortion 
[3]. The size of the images is MxN, while the pixels coordinates are (m,n).

If we compare the performances of the FMT transformation with the standards method of 
compression,  (JPEG),  we  will  verify  that  we  can  reach  good  results  of  compression,  without 
debasing  the  image.  What  is  more,  those  results  are  obtained  when  applying  the  multi-scale 
transformation to the whole image, while the DCT transformation, which is the basis of the JPEG 
method, is not effective when applied to reduced blocks pixels (generally applied to blocks of size 
8×8 pixels) [6], what involves the appearance of the blocks of artifacts on the images when the 
compression ratio is high [5]. This phenomenon of artefacts blocks is not common in the FMT 
transformation (see applications).

2.2. The encryption algorithm DES
The D.E.S algorithm (Data Encryption Standard) is born in 1975 following a request from 

I.B.M. in 1960 for its program from research on data-processing coding [13]. At the beginning, the 
specialists in the N.S.A. (National Security Agency) break teeth thus I.B.M. above is constrained to 
use it in a form simpler than envisaged. The use of the D.E.S. spreads then little by little in the 
American administrations [1]. Since, the D.E.S. is given on level every approximately 5 years to 
face the increasing power of the computers which put it in danger [12].

The message, above all, converted into binary, is cut out in blocks Bi of 64 bits. The key K, it, 
comprises 56 bits. For each block Bi, one applies the following algorithm [7]: 

1) One carries out an initial permutation of the bits of the block Bi. One calls G0 and D0 then 
the parts of 32 bits right-hand side and left of the block obtained.

2) One repeats 16 times the following procedure :
a. Gi = Di-1

b. Di = Gi-1 XOR f(Di-1, Ki) (XOR is represented by + on the diagram below) where Ki is 
a  block  of  48  bits  of  the  key  K,  and  F  a  function  successively  made  up  of  an 
expansion of bits, a XOR, a reduction of bits, and a permutation of bits.

3) One recomposes a B'16 block in “resticking” D16 and G16 in this order.
4) One carries out the opposite permutation of the initial permutation 1).

Here a diagram summarizing the various parts of the algorithm (Figure 5)[2]:
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Figure 5: Diagram of Encryption DES.

2.3. The schema of principle of the encryption-compression suggested approach
 The essential idea is to combine the compression and the encryption during the procedure. It 

is  thus  a  question  of  immediately  applying  the  encryption  to  the  coefficients  of  the  preserved 
compression, after the application of transformed FMT to visualization in mixed scales. Our general 
diagram is given on figure 6 as follow: 

 

Figure 6: General diagram of the encryption – compression approach.
It consists in carrying out an encryption after the stage of quantization and right before the 

stage of entropic coding.  To restore the starting information, one decodes initially the quantified 
coefficients of the FMT matrix by the entropic decoder. Then, one deciphers them before the stage 
of quantization. Lastly, one applies the RFMT (Reverse FMT) to restore the image.

The  principal  advantages  of  our  approach  are  the  flexibility  and  the  reduction  of  the 
processing time during the coding and decoding operations. Indeed, by our method, one can vary 
the processing time according to the desired degree of safety.

3. Results
3.1. Applications 

The results obtained after the application of our method on the images (Lena), (echo graphic 
image), (Flower) are given as follows:
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Lena’s original image Representation in mixed 
scales (FMT) 

Compressed and 
encrypted image

Reconstituted 
image 

Echographic’s original 
image

Representation in mixed 
scales (FMT)

Compressed and 
encrypted image

Reconstituted 
image 

Flower’s
Original image

Representation in mixed 
scales (FMT)

Compressed and encrypted 
image

Reconstituted 
image 

   

3.2. Comparison 
The comparison is carried out, after the application of the methods of compression-

encryption: DCT-RSA, DCT-partial encryption and our method FMT-DES on the image “Lena”, 
“echographic images” and “Flower”. It should be noted that the resolution of the images is 256×256 
dpi, and the processor used is Intel Pentium4 for a rate equalizes 3.2 GHz. The results obtained are 
given on table 2 following:

Entropy of 
original 
image 

DCT-RSA DCT- Part. Encryt.. FMT-DES

PSNR
(dB)

Entropy of 
reconstituted 

image 

PSNR
(dB)

Entropy of 
reconstituted 

image

PSNR
(dB)

Entropy of 
reconstituted 

image
Lena 7.589 35.023 7.033 35.351 7.083 34.807 6.996

Echo. image 8.351 41.146 7.814 41.478 7.811 40.928 7.799
Flower 8.988 32.414 8.423 32.759 8.478 32.205 8.357

Table 2: Comprarison of FMT-DES with DCT-RSA and DCT-Partial Encryption.

For applied the encryption methods RSA and Partial encryption, we propose to quantify only 
the  quantified  frequential  coefficients  relating  to  the  low  frequencies.  By  quantifying  all  the 
coefficients  of  the  first  column  and  the  first  line  of  the  blocks  8×8,  the  size  of  the  crypto-
compressed image is closer to the size of the original image. In this case we lose in ompression 
ratio. It should be noted that the DCT-RSA and DCT-Partial encryption require a long computing 
time,  while  these  methods  depend  on  the  coefficients  selected  before  the  realization  of  the 
encryption.  It leads to the appearance of the artefact blocks on the reconstituted images when the 
compression ratio is high. This Phenomenon of artefact blocks is not known any more in the FMT 
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transformation. For the DCT-Partial encryption and DCT-RSA methods, we kept the coefficients of 
the first line and the first column, after the application of the DCT transformation on each block of 
8×8 pixels.  In general, the two methods give a less visual quality compared to the method FMT-
DES. 

The  principal  advantages  of  our  approach  are  the  flexibility  and  the  reduction  of  the 
processing time, which is proportional to the number of the dominant coefficients, at the time of the 
operations of encryption and decryption. Indeed, by our method, one can vary the processing time 
according to the desired degree of safety.

4. Conclusion  
We presented an approach of encryption-compression which is based on the (FMT) multi-

scale transformation, stemming from the expression of the images in the Faber-Schauder base and 
the encryption algorithm (DES). The FMT transformation is distinguished by its simplicity and its 
performances of seclusion of the information in the outline regions of the image. The mixed-scale 
visualization of the transformed images allows putting in evidence its properties, particularly, the 
possibilities of compression of the images and the improvement of the performances of the other 
standard methods of compression as JPEG and GIF.  The encryption algorithm (DES) leaves, in the 
stage of compression, homogeneous zones in the high frequencies.

 The algorithm of encoding D.E.S. is strongly threatened by the computing powers of the 
computers. It is indeed not impossible to sweep the majority of the keys to break the code. A new 
system, the A.E.S. (Advanced Encryption Standard) is designed to replace it.

The comparison of our  method with the methods: DCT-RSA and DCT-Partial  encryption 
showed well its good performance.

 Finally, we think of using hybrid methods in compression and encryption by mixture of data 
and setting up a encrypt analysis of the proposed approach.
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