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Abstract
This work proposes an asymptotic method of solution for a system of nonlinear

nonhomogeneous equations of one class of initial-boundary problems with an unknown
external boundary in the domain. The system of equations describes an adiabatic
spherical and symmetrical motion of a gravitating gas , while a moving detonating wave
(a spherical surface where the solution undergoes the first kind of discontinuity) is the
external boundary of the domain.

As the first test problem in this work considered nonavtomodel problem of a central
explosion followed by a thermonuclear detonation of a nonhomogeneous bounded with
vacuum, gas sphere that is balanced in its own gravitating field. The asymptotic method
of a thin shock layer is used for the motion law and the thermodynamic characteristics
of the medium are calculated. For the zero approximation of the detonating wave motion
layer of Couch's problem in particular case are solved exactly and in general case –
with numerical methods. Interpolation formulas and asymptotics are founded.
As the second test problem in this work considered nonavtomodel problem of a central
explosion followed by a thermonuclear detonation of a nonhomogeneous bounded with
interstellar space (vacuum), gas sphere (nonhomogeneous star) that is balanced in its
own gravitating field. The initial-boundary problem for a system of nonlinear
nonhomogeneous equations are solved with asymptotic method of a thin shock layer.
The first two approximations for the motion law and the thermodynamic characteristics
of the medium are calculated. For the zero approximation of the detonating wave motion
layer of Couch's problem are solved with numerical methods. Numerical results are
founded.

The mathematical modeling of astrophysics processes are one of the most actual problem of
modern applied  mathematics [1,2].

To resolve a number of astrophysical problems one has to investigate the dynamics of the
gas bodies that interact with a gravitating field. It is clear that the conceptions of astrophysical
problems investigation can be based on the statement and solution of a number of gas motion
dynamic problems. These problems are regarded as theoretic models that include important
peculiarities of the motion and evolution of stars.

The methods, devices and considerations of modern theoretical gas dynamics and
aerodynamics must be used for the construction and investigation of such models and the statement
and solution of corresponding mechanic problems related to astrophysics ones.

Numerical modeling of problems of  processes that take place on the nuclei of the stars has
been widely used for establishing of the phenomena of supernovae flashes [3-5]. Main attention is
paid to physical processes related to thermonuclear  reactions  and spreading of neutrinos radiation.
Less attention is paid to the gas dynamics as a whole. It was considered for a long  time that
neutrinos, formed in electric seizure and radiated by the central nucleus of a star must transfer a
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radial component of its impulse to the external layers of a star must  transfer a radial component of
its impulse  to the  external layers of the star, thus  causing an supernovae explosion. However, we
had to reject such mechanism of explosion after the discovery (theoretically and experimentally) in
weak interaction of neutral currents that lead to keeping of neutrinos in the star nucleus [6].

This work proposes an asymptotic method of solution for a system of nonlinear no
homogeneous equations of one class of initial-boundary problems with an unknown external
boundary in the domain. The system of equations describes an adiabatic spherical and symmetrical
motion of a gravitating gas , while a moving detonating wave (a spherical surface where the
solution undergoes the first kind of discontinuity) is the external boundary of the domain.

As the first test problem in this work considered nonautomodel problem of a central
explosion followed by a thermonuclear detonation of a no homogeneous bounded with vacuum, gas
sphere that is balanced in its own gravitating field. The asymptotic method of a thin shock layer is
used for the motion law and the thermodynamic characteristics of the medium are calculated. For
the zero approximation of the detonating wave motion layer of Couch's problem in particular case
are solved exactly and in general case – with numerical methods. Interpolation formulas and
asymptotics are founded.

As the second test problem in this work considered nonautomodel problem of a central
explosion followed by a thermonuclear detonation of a no homogeneous bounded with interstellar
space (vacuum) , gas sphere (no homogeneous star) that is balanced in its own gravitating  field.
The initial-boundary problem for a system of nonlinear no homogeneous equations are solved with
asymptotic method of a thin shock layer. The first two approximations for the motion law and the
thermodynamic characteristics of the medium are calculated. For the zero approximation of the
detonating wave motion layer of Couch's problem are solved with numerical methods. Numerical
results are founded.

1. Let us discuss the equations of the adiabatic spherical and symmetrical motion of a gas that
are written in Lagrange's form [ 7 ]:
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Here m  is the r(m,t)  radius sphere mass, k is the gravitation constant, γ is the adiabatic
indicator , f(m)  is the function connected with the distribution of entropy by Lagrange's m
coordinate. r = r(m,t)  is  medium motion law, p(m,t) is medium pressure, ρ(m,t) is medium density.

The first equation of system (1.1) is the motion equation, the second equation is the
adiabation equation, the third equation is the mass continuity equation. r(m,t), p(m,t), ρ(m,t)
functions are unknown.

The integral equation of the energy of the gas layer situated between the m=0 and  m=M(t)
surfaces is as follows:
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Here T,U,V  are the kinetic, inner and potential (gravitation) energies of the gas, Q is the
energy excreted during the burning of a gas mass unit of the m = M(t)  surface, E is the explosion
energy, m = M(t) is the law of motion shock ( 0=Q ) or detonation ( 0≠Q ) wave with gas mass,

(1.1)

(1.2)
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R= r ( M(t), t) is the radius of a shock or detonation wave. 1, 2 indices denote correspondingly the
gas position in front of and behind the wave.

Boundary conditions on the m = M(t) discontinuity of Euler's variables are as follows:
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Boundary  conditions on the ( )tMm =  discontinuity of Lagrange's variables are as follows:
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If  boundary conditions (1.3) or (1.4) are solved with respect to parameters of the gas behind
the wave we get the following:
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             Besides, the continuity of Euler's and Lagrange's variables ought to be taken into account
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(1.3)

(1.4)

(1.5)
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   In fact, we get  a initial-boundary problem for the system (1.1) of nonlinear, no homogeneous
equations, where the       ( ) ( ) ( )tmtmptmr ,,,,, ρ      functions are unknown.
       Initial conditions ( 0tt = , phone) determine the initial state of a gas sphere and are the
exact   ),,(1 tmr  ),(1 tmP , ),(1 tmρ  solutions of the (1.1) system.

Thus, the initial-boundary problem is considered in the domainΩ :

*0 ,({ ttt∈=Ω ) ,    ))}(,0( tMm∈ ,

where 0t   is the moment of explosion, *t  is the moment of time when the wave comes out
on the surface of the body (when  0,00 >≥ ∗tt ) or the moment of collapse (when  0,00 =< ∗tt ).

Boundary conditions on the external unknown boundary  ( )tMm =  are like (1.4), (1.5) and
in centre

0),( =tmr ,  when    0=m .

2. For the most of the gases  
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γε   is a small parameter  [7 - 10].

Besides, it is included in (1.1) as a system of equations, in the boundary conditions (1.5) and
in the integral equation (1.2), whence the  ( )tR   law of wave motion is established.

Thus, the analysis of the system of equations and boundary conditions makes it clear that the
solution can be sought for behind the wave with respect to the small parameter ε   as a kind of
several decompositions.

But the decompositions becomes irregular near the  symmetry centre  ( 0=m ) [7 - 10].   For
the solution regularization in this domain we use the method of consecutive approximation the
essence of which is that the members of the series area  ε   maintained in the zero approximation

( )tm,0ρ   of  the expression  ( )tm,ρ . Then the first approximation for the medium motion and wave
laws is found from the continuity equation by means of the boundary condition ( ) 0,0 =tr  and the
zero approximation.

The first approximations of the  ( )tmp ,   and  ( )tm,ρ   functions will be found in the rest of
the system  (1.1) of equations.

The described our method makes it possible to solve quate a wide class of  initial-boundary
problems of a system of equations (1.1). It is natural that the choice of decomposition depends on
the initial state of the gas sphere (the exact solution of  (1.1) system before the wave) and on the
energy of the explosion.

3. Let us discuss the problem of the central explosion at the 0=t  moment of a no
homogeneous gas sphere ( star ) balanced in its own gravitation field as the first test problem.

Thus, the exact solution of the system of equations (1.1) that corresponds the no
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     It arises from  (3.1)  that the  pressure p  and density  ρ   is equal to zero on the sphere
surface  ( 1=r ), i.e. the  1=r  sphere is a boundary between a star and the interstellar space, as the
density of the interstellar gas  2410~ −ρ  gr/sm 3 .                             .
          Let us introduce a small parameter [ 7 – 10]
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     The analysis of the energy integral equation (1.2)  and the condition of the existence of a
detonating wave (1.5) before the moment of the body coming out on the surface leads us to the
condition
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        Besides, the time of detonating wave motion before the sphere comes out on the surface will
be of  ε   series.
        That's  why for the sake of simplicity we can additionally protract the time

ε
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       The analysis of the system of equations (1.1) and the boundary conditions (1.5) makes it clear
that the solution can be sought behind the detonating wave as the following decomposition:
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    Including  the (3.2) decomposition into the (1.1) system of equations, in the
 (1.2) integral equation and in the (1.5) boundary conditions, we shall obtain the zero approximation
of the problem solution using the regularization method [7 - 10].
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and )(00 mTT = is the moment of time when the detonating wave passes the particle with Lagrange's
m coordinate.

The function )(0 τR  in the (3.2) is the Cauchy's following  problem solution:
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          In general  case the (3.4) problem are solved with numerical methods (Euler's and Range -
Cute methods).
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We shall obtain the following from the continuity equation in the next ( first ) approximation
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We shall use the boundary condition in the centre: m = 0 when  r = 0, to establish the
first approximation )(1 τR  of the detonating wave motion law. We shall obtain the following
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Using the motion  law of the gas found behind the detonating wave (3.6), (3.7) we shall
calculate  ),,(1 τmp  ),(1 τρ m  from (1.1) system of equations.
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         4.  Let us discuss the second test problem. The exact solution of the system of equations (1.1)
that corresponds the no homogeneous gas sphere (star) balanced in its own gravitation field is taken
as an initial condition ( phone). The gravitation constant, the sphere centre density and the sphere
radius are taken as main units of dimension
                              nr)1( −=ρ ,
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It arises from (4.1) that the pressure  p  and density  ρ  is equal to zero on the sphere surface

)1( =r , i.e. the 1=r  sphere is a boundary between a gravitating gas sphere (star) and the vacuum
(the interstellar space, as the density of the interstellar gas ~ρ 2410− gr/sm3).

The exact solution  (4.1) of the system of equations (1.1) describes vary real model of the
star and of the interstellar medium.

Let us introduce a small parameter
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The analysis of the system of equations (1.1) and the boundary conditions (1.5) makes it
clear that the solution can be sought  behind the detonating wave as the following asymptotic
decomposition:
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Including the  (4.2) decomposition  into the (1.1) system of equations, in the  (1.2) integral

equation and the   (1.5) boundary conditions, we shall obtain the zero approximation of the problem
solution using the regularization  method [7 -10].
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where )(mrr = are  determinate from (4.1), 0T  = )(0 mT  is the moment of time when the
detonating wave passes the particle with Lagrange's m coordinate.
         The function )(0 τR  in the (4.3) is the Cauch's following special problem solution:
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The Cauch's  problem  (4.4) exactly not solved. For the problem solution we use the Euler's
numerical method. The numerical solution considerate from the time 0=τ     for the time *τ , where
are founded from equality

1)( *0 =τR
The Cauch's problem (4.4) asymptotic of solution are calculated, when   +→ 0τ
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0 4
75
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π
ττ E

R , +→ 0τ

         The results of the numerical solution are founded.
In the next (first) approximation we shall get the following from the continuity equation (1.1)

∫−=
M

m m
dmRr

),(3
4

3
4

0

33

τρ
εππ

           We shall use the boundary condition in the centre: m=o when r=0,  to establish the first
approximation )(1 τR the decomposition (4.2) of the detonating wave motion law. We shall obtain
the following formula:

3
1

0 0 ),(4
3)( ⎥

⎦

⎤
⎢
⎣

⎡
= ∫

M

m
dmR

τρ
ε

π
τ

           Finally, using the motion law of the gas found behind the detonating wave  (4.5), (4.6) we
shall calculate the first approximations ),(1 τmp  and ),(1 τρ m  from   (1.1) system of equations.

(4.4)

(4.5)

(4.6)
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