
Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|No.4(11)

57

Portable Parallel Translation Machine for Multi-Dictionary Systems

Moses E. Ekpenyong
Department of Mathematics, Statistics and Computer science, University of Uyo, P.M.B. 1017, Uyo, 520001, Uyo, Nigeria

E-mail: ekpenyong_moses@yahoo.com Tel: (234)8037933961

Abstract
This paper implements an open source multi-dictionary parallel-translation machine
using the Python programming language. The implementation parallelizes the
translations of English words into three different languages (German, Ibibio and
French). The research model has adaptability for n-languages, which could be
implemented by adding n-process threads to the current design and building n-
dictionaries in a Python compatible database format. To evaluate the performance of
this design, a sequential version of the parallel-translation machine was also
developed and compared with the parallel version. It was observed that on the
average, for ten (10) existing words randomly selected from a database of four
hundred and six (406) words, the processing time for translations in the parallel-
translation machine was faster than its sequential version.

Keywords: DBMS, MT, Python MPI, Simulation, Multi-threading, String Processing

Introduction
Dictionaries and word translation models are used by various systems, most often in machine

translation (MT). In the realm of database management systems (DBMSs), the term
concurrency/parallelism is used to denote the ability of more than one database application (or process)
to run at the same time. DBMS can allow multiple users access to data at the same time while
maintaining integrity and consistency of data. Because DBMSs has the ability to share data among
multiple users and multiple applications, the database system should provide a means for managing
concurrent access to data thereby ensuring that the data will be maintained in a consistent state, and
that the integrity of data will be preserved.

One of the methods of accomplishing this is to enforce an exclusive serial mode of processing
database requests. That is, each transaction waits until another transaction has completed its work.
However, this type of processing results in performance levels that are simply unacceptable for today’s
online systems and customer’s expectations. As an alternative, the DBMS can manage the access to
data through the means of locks which are software mechanisms used in order to allow as much
throughput (by maximizing concurrent access to data) as possible while maintaining the integrity and
consistency of data.

This paper implements a parallel-translation model that processes multi-databases of
translations simultaneously and extracts translations of English words entered by a user. At the end of
this paper, a more cost effective tool for portable parallelism that could be modified for other
implementations will be accomplished.

Parallel Dictionaries: Related Literature
McEwan, Ounis & Ruthven (2002) describe a system for automatically constructing bilingual

dictionary for Cross-Language Information Retrieval (CLIR) applications. They describe how parallel
documents can be automatically accessed, filtered and processed to create parallel sentences.

Parallel texts have been applied in several studies on CLIR (Brown, 1998; Davies & Ogden,
1997; Littman, Dumais & Landauer, 1998; Yang, Carbonell, Brown & Frederking, 1998). In Littman
et.al. (1998), the latent semantic reduction indexing approach has been applied to a relatively parallel

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|No.4(11)

58

text collection in English with French, Spanish, Greek and Japanese. This approach tries to overcome
the problems of lexical matching by using statistically derived conceptual indices instead of individual
words for retrieval. It assumes that there exist some underlying or latent structures in word usage that is
particularly obscured by variability in word choice. The effectiveness of this approach has not been
tested on a large data collection. In Yang et. al. (1998), a corpus-based bilingual term-substitution
thesaurus, has been constructed from parallel texts using co-occurrence information. Davies & Ogden
(1997) integrate traditional, glossary-based machine transaction technology with Information Retrieval
(IR) approaches into Spanish/English CLIR system. These approaches use domain-specific parallel
collections, which are costly to obtain.

Recently, there have been several attempts to collect cheap parallel texts from the web. Resnik
(1998) and Resnik (1999) were among the foremost researchers to investigate methods to collect
parallel/translate texts from the web. Automatic construction of thesauri using statistical techniques is a
most common IR technique, (Chen, 2000; Chen and Nie, 2000; Van Rijsbergen, 1999).

Dictionary Building
A lot of work has been done on dictionary building, with various techniques. One good

overview is Melamed (2000). There is also an active research area focusing on multi-source translation
(for instance, Och and Ney, 2001). Mc Ewan, et. al. (2002) divide the dictionary building stage into
three steps: building a matrix of words, normalizing the raw co-occurrence scores in the matrix and
making a dictionary listing of terms with the highest co-occurrence probability for each equivalent
language term.

Sabot (1986) describes the problem of parallel dictionary lookup as, “given both a dictionary
and a text consisting of thousands of words, how can the appropriate definitions be distributed to the
words in the text as rapidly as possible?” He discovered and described a parallel dictionary lookup
algorithm that makes efficient use of the connection machine (CM) – a bit serial hardware. It is very
clear that most natural languages processing applications require an efficient lookup algorithm.
Indexing and searching of databases consisting of unformatted natural language text is one of such
applications.

Accessing Dictionaries
A dictionary may be defined as a mapping that receives a certain word and returns a set of

status bits. Status bits indicate which group of words a certain word belongs to. Some sets that are
useful in natural language processing include syntactic categories such as verbs, nouns and
prepositions. Programs can also implement semantic information characterization by capturing the
structure in an information schema, which specifies the semantic classes of the information domain, the
words and phrases that belongs to these classes, and the predicate argument relationships among
members of these classes, which are meaningful to the domain.

Sabot (1986) implement dictionary access where a lookup definition of word consists returning
a binary number that contains 1’s only in bit positions that corresponds with the groups to which the
word belongs. He improved on dictionary building by introducing two sub-modules (sort and scan). A
parallel sort is similar in function to a serial sort. It accepts as arguments a parallel data field and a
parallel comparison predicate, and sorts among the selected processors so that the data in each
successive (by address) processor increases monotonically. A scan algorithm takes an associated
function of two arguments, called F, and quickly applies it to data field values in successive processors
of say a, b, c, d, e. The scan algorithm produces output fields in some processors with values: a, F(a,b),
F(F(a,b),c), F(F(F(a,b),c),d), etc. the major point is that a scan algorithm can take advantage of the
associative law and perform a task in logarithmic time. Thus 16 applications of F are sufficient to scan
F across 64,000 processors. Sabot (1986) shows one possible scheme for implementing scan, while the
scheme is based on a simple linked structure, scan may also be implemented on binary trees, hyper-
cubes and other graph data structures.

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|No.4(11)

59

Design Method
In this section we simulate a multi-dictionary (English, Ibibio, German and French) parallel-

translation system using Python programming language. The essence of using Python is to make the
program much easier to port, or modify to run on different computers and the Internet. The research
implements the multi-program multi-data (MPMD) model. It receives a search word from the operator
or user and passes the word position with same search program to the different processors or threads.
The dictionaries (databases) are built in Excel (spreadsheet) using accepted Python dictionary data-
structure format (i.e. converted to .csv files) to enable processing and updating flexibility. These
dictionaries are translations of the English words in the English database. The translations are also
directly mapped to the English database, thus eliminating search errors during the parallel search. This
implies that all the dictionaries (English, Ibibio, German, and French) contain same number of
wordlist. The dictionaries are searched concurrently after spawning the processors. If a search word is
successfully matched in a particular dictionary/database, the required translation of that word is
returned, else an error message results.

Programming Language Choice
Python has rich string processing functions and its multi-threading facilities are used in the

programming to provide the much-needed features of parallelism. Parallelism is emulated in our design
using Python’s multi-threading facilities. The threads (processes or processors) are simultaneously
spawned and run in the random access memory (RAM) of the computer system. The justification of
this approach is that the spawned threads can share same memory space. This approach represents a
more cost effective solution to parallel computing since it is worthwhile to expand memory than
building parallel machines. Python effectively handles parallelism issues such as deadlocks, threading,
synchronization and locking.

Research Model
A finite state transducer (FST) that describes the research model is as shown below:

Legend: ew - english word, wp - word position, spawn pi(f(wp)) - pass wp function into i process,
Search Dict (wp,Li) - search for the ith language equivalent for wp, h(Li) -ith language translation for
wp, g(0) - error (word not found in dictionary)

Fig. 1. Multi-lingual Parallel-Dictionary Model

Get ew

 Spawn spawn spawn spawn
 p1(f(wp)) p2(f(wp)) p3(f(wp)) pn(f(wp))

 . . .
1. Search
Dict(wp,L1)

 2. found (
return h(L1)
else (g(0))

1. Search
Dict(wp,L2)

 2. found (
return h(L2)
else (g(0))

1. Search
Dict(wp,L3)

 2. found (
return h(L3)
else (g(0))

1. Search
Dict(wp,Ln)

 2. found (
return h(Ln)
else (g(0))

1. Lookup
Dict(ew,wp)

 2. found (
pass (wp)
else (g(0))

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|No.4(11)

60

Program Modules
Below shows the Python program modules that implement the FST in fig. 1.:

#MULTI-THREADED VERSION
#import python essential files for multi-threading,
etc.
from threading import Thread
import string
import time
import os

#create a thread class for Process one (Ibibio
process)
class thread_ibibio(Thread):

 #define a local constructor for word input and
dictionary file variables
 def __init__(self, posinput, dictfile):
 Thread.__init__(self)
 self.posinput = posinput
 self.dictfile = dictfile
#run ibibio search thread
def run(self):
 #search and locate the english word
position in Ibibio dictionary and
 #extract equivalent translation

 i=0
 #open ibibio file for read
 print "\nProcessing Start time (ms) = ",
time.time()
 inp = open(self.dictfile,"r")
 for line in inp.readlines():
 i=i+1
 if self.posinput == i:
 print "Ibibio Translation: ", line
 #close file
 inp.close()

#create a thread class for Process Two (German
process)
class thread_german(Thread):

 #define a local constructor for word position
input and dictionary file variables
 def __init__(self, posinput, dictfile):
 Thread.__init__(self)
 self.posinput = posinput

 self.dictfile = dictfile

 #run German search thread
 def run(self):

 #search and locate the english word
position in German dictionary and
 #extract equivalent translation
 i=0
 #open german file for read
 inp = open(self.dictfile,"r")
 for line in inp.readlines():
 i=i+1
 if self.posinput == i:
 print "German Translation: ", line
 #close file
 inp.close()

#create a thread class for Process Three (French
process)
class thread_french(Thread):

 #define a local constructor for word position
input and dictionary file variables
 def __init__(self, posinput, dictfile):
 Thread.__init__(self)
 self.posinput = posinput
 self.dictfile= dictfile

 #run French search thread
 def run(self):

 #search and locate the english word
position in French dictionary and
 #extract equivalent translation
 i=0

 #open french file for read
 inp = open(self.dictfile,"r")
 for line in inp.readlines():
 i=i+1
 if self.posinput == i:
 print "French Translation: ", line
 #close file
 inp.close()

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|No.4(11)

61

 print "Processing Stop time (ms) = ",
time.time()
 print "\n"
 quit = raw_input("Check another
translation? (y/n): ")
 if quit == "y":
 main()

#Main procedure
def main():

 #request for an english word
 os.system("cls")
 print "\t\tTHREADED EXECUTION OF
MULTI GLOSSARY SYSTEM\n"
 engword=raw_input("Enter an English word
you wish to translate: ")

 #locate the line or word position in english
glossary file
 #declare word position
 wordpos,engwordpos = 0,0
 inp = open("englishglofile.csv","r")
 word=[]
 for line in inp.readlines():
 wordpos = wordpos+1
 word=line
 word1 = word[:-1]

 #if english word is in english glossary file
 if engword == word1:
 engwordpos=wordpos
 break

 #close file
 inp.close()

 if engwordpos == 0:
 print "\nWord not existing in English
Glossary file"
 else:
 #pass word line into Prosesses One, Two and
Three
 processOne =
thread_ibibio(engwordpos,"ibibioglofile.csv")
 processTwo =
thread_german(engwordpos,"germanglofile.csv")
 processThree =
thread_french(engwordpos,"frenchglofile.csv")

 #Start the three processes simultaneously
 processOne.start()
 processTwo.start()
 processThree.start()

main()
Program modules listing for the multi-
threaded version

#SEQUENTIAL VERSION
#import python essential files
import string
import time
import os

#Main procedure
def main():
 #request for an english word
 os.system("cls")
 print "\t\tSEQUENTIAL EXECUTION OF
MULTI GLOSSARY SYSTEM\n"
 engword=raw_input("Enter an English word
you wish to translate: ")

 #locate the line or word position in english
glossary file
 #declare word position
 wordpos,engwordpos = 0,0
 inp = open("englishglofile.csv","r")
 word=[]
 for line in inp.readlines():
 wordpos = wordpos+1
 word=line
 word1=word[:-1]

 #if english word is in english glossary file
 if engword == word1:
 engwordpos=wordpos
 break

 #close file
 inp.close()

 if engwordpos == 0:
 print "\nWord not existing in English
Glossary file\n"
 else:
 print "\nProcessing Start time = ",
time.time()

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|No.4(11)

62

 #open ibibio glossary file and search for
word position
 inp = open("ibibioglofile.csv","r")
 i = 0
 for line in inp.readlines():
 i=i+1
 if engwordpos == i:
 print "Ibibio Translation: ", line
 #close file
 inp.close()

 #delay

 #open german glossary file and search for
word position
 inp = open("germanglofile.csv","r")
 i=0
 for line in inp.readlines():
 i=i+1
 if engwordpos == i:
 print "German Translation: ", line
 #close file
 inp.close()

 #open french glossary file and search for
word position

 inp = open("frenchglofile.csv","r")
 i=0
 for line in inp.readlines():
 i=i+1
 if engwordpos == i:
 print "French Translation: ", line
 #close file
 inp.close()

 #delay

 print "Processing Stop time ", time.time()
 print "\n"

 quit = raw_input("Check another
translation? (y/n): ")
 if quit == "y":
 main()

main()

Program module listing for the sequential
version

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|No.4(11)

63

The program listing in page 6 is presented to enable readers who are unfamiliar with parallel
simulations and may wish to try out the implementation.

Database Implementation
A database illustration of the parallel search implementation is shown below:

Fig. 2. Database implementation of the parallel search.

Sample Input/Output Interfaces
Figs. 3(a) and 3(b) shows the sample input/output interface of the design. The input to the

program is an English word that requires translation. The program records using the computer time, the
processing start time (time before translation) in milliseconds after accepting an input. It then searches
the respective databases for equivalent translations, if a successful translation is matched, the

Locate “BABY” , Wordpos = 15

englishglofile.csv

germanglofile.csv ibibioglofile.csv frenchglofile.csv

L
oc

at
e

w
or

dp
os

, o
ut

pu
t(

“k
in

le
in

”)

L
oc

at
e

w
or

dp
os

, o
ut

pu
t(

“n
se

k
ej

In
”)

L
oc

at
e

w
or

dp
os

, o
ut

pu
t(

“b
eb

e”
)

English word = “BABY”

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|No.4(11)

64

translations are displayed and the time after processing (processing stop time) is recorded. The time
difference as recorded in table 1 represents the processing time.

Fig. 3(a). Sequential version input/output interface for the words “SONG” and “BRING”

Fig. 3(b). Parallel version input/output interface for the words “SONG” and “BRING”

Presentation and Discussion of Results
In this section, the results obtained from the research are presented and discussed. The

performance of both the sequential and parallel versions of the machine was evaluated by
implementing the system with databases of four hundred and six (406) words/translations. The
sequential version executes the different translations in a serial order while the parallel version
executes the translations simultaneously.

Table 1 shows the performance results for both program versions.
Table 1: Summary Result of ten randomly selected words

SEQTransl time (ms) PARLLTransl time (ms)S/n Eng. Word WP
Start search Stop search Tdiff Start search Stop search Tdiff

1 ABOVE 1 1099143562.36 1099143562.37 0.01 1099146362.84 1099146363.81 0.07

2 BRING 50 1099145380.21 1099145380.22 0.01 1099155937.77 1099155937.83 0.06

3 COME 80 1099143598.51 1099143598.53 0.02 1099144616.36 1099144616.38 0.02

4 FORK 140 1099143873.20 1099143873.24 0.04 1099144725.43 1099144725.45 0.02

5 HOSPITAL 174 1099145535.40 1099145535.44 0.04 1099145028.14 1099145028.16 0.02

6 JUMP 184 1099143668.56 1099143668.61 0.05 1099144673.75 1099144673.77 0.02

7 LIFT 204 1099144505.11 1099144505.15 0.04 1099145103.17 1099145103.19 0.02

8 SONG 326 1099145272.83 1099145272.88 0.05 1099144904.58 1099144904.59 0.01

9 WEPT 392 1099144024.71 1099144024.77 0.06 1099144644.24 1099144644.26 0.02

10 ZERO 406 1099145889.19 1099145889.25 0.06 1099146168.18 1099146168.20 0.02

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|No.4(11)

65

Legend: Eng. word: English word, WP: Word Position in English dictionary/database
SEQTransl : Sequential version translation time in milliseconds, PARLLTransl : Parallelized version
translation time in milliseconds, Tdiff: Time difference (ms) – Processing time.

Speedup is the extent to which more hardware can perform some task in less time than the original
system. Speedup is an important property for measuring the performance goals of parallel processing.
With good speedup, the system response time could be reduced. The formula below measures the
speedup:

Speedup = Sequential time spent
Parallel time spent

The speedups at different word positions are as shown in Table 2 below:

Table 2. Speedups obtained from the research
Word position 1 50 80 140 174 184 204 326 392 406

Speedup 0.1429 0.1667 1 2 2 2.5 3 5 5 3

From table 1, a plot of the processing time vs word position reveals that the translation time for
the sequential version increases as words to be translated approaches the end of file (fig. 4(a).), while
for the multi-threaded translation version, the processing time decreases as words to be translated
approaches the end of file (fig. 4(b)).

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1 50 80 140 174 184 204 326 392 406

word position

P
ro

ce
ss

in
g

 t
im

e
(m

s)

Fig. 4(a). A plot of processing time vs word position for the sequential translation system.

pr
oc

es
si

ng
 t

im
e

(m
s)

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|No.4(11)

66

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1 50 80 140 174 184 204 326 392 406

word position

P
ro

ce
ss

in
g

 t
im

e
(m

s)

Fig. 4(b).A plot of processing time vs word position for the parallel translation system.

From the above plots we observe that for parallelism to be noticed on microcomputers, the
processors must be efficiently utilized, (Ekpenyong & Boukari, 2004; Ekpenyong, Boukari &
Edemenang, 2005). Better speedups could be obtained by implementing large databases/dictionaries.
This is evident in Table 1, where the speedup appreciates as the processing distance increases. The
design is also suitable for implementing complex database systems on microcomputers.

Conclusion
This work has provided an adaptable model/framework for parallel multi-dictionary translation

systems. The research has also provided facilities for n-language translations. The framework is most
suitable for distributed databases and complex scientific computations/ processing systems. The
efficiency of the design implementation can be appreciated with increase in the volume of processed
data.

pr
oc

es
si

ng
 t

im
e

(m
s)

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006|No.4(11)

67

References

1. Brown, R. D. (1998). Automatically Extracted Thesauri for Cross-Language IR: When better is
worse, 1st Workshop on Computational Terminology (Computerm): 15-21.

2. Chen, J. (2000). Parallel Text Mining for Cross-Language Information Retrieval using a Statistical
Translation Model. M.Sc. Thesis, University of Montreal. http/www.iro.umontreal.ca/~chen/thesis/
model.html.

3. Chen, J. & Nie, J. Y (2000). Parallel Web Text Mining for Cross-Language IR. In Proceedings of
RIAO-2000. “Context-Based Multimedia Information Access” , Paris: 12-14.

4. Davies, M. W. & Ogden, W. C. (1997). QUILT: Implementing a Large Scale Cross-Language Text
Information Retrieval (ACM SIGIR ’97), Philadelphia: 92-98.

5. Ekpenyong, M. E. & Boukari, S. (2004). Simulating SPMDs on Sequential Machines. Journal of
Computer Science & Its Applications. Vol. 4. No. 2: 40-49.

6. Ekpenyong, M. E.; Boukari, S & Edemenang, E, J. (2005). Simulating MPMDs on Sequential
Environments. Ultra Scientist of Physical Sciences, Vol. 17, No. 3(M): 477-486.

7. Littman, M. L.; Dumais, S. T. & Landauer, T. K. (1998). Automatic Cross-Language Information
Retrieval using Latent Semantic Indexing. In Grefenstette, G. (ed:): Cross-language Information
Retrieval, Kluwer Academic Publishers: 51-62.

8. McEwan, C. J.; Ounis, L. & Ruthven, I. (2002). Building Bilingual Dictionaries from Parallel Web
Documents, ECIR: 303-323, http://www.citeseer.ist.Psu.edu/655761.html.

9. Melamed, I, D. (2000). Models of Translational Equivalence among Words. Computational
Linguistics, 26: 221-249.

10. Och, F. J. & Ney, H. (2001). Statistical Multi-Source Translation. In Proceedings of MT Summit
VIII: 253-258.

11. Resnik, P. (1998). Parallel Strands. A Preliminary Investigation into Mining the Web for Bilingual
Text. In Proceedings of the AMTA - 98 Conference.

12. Resnik, P. (1999). Mining the Web for Bilingual Text. In Proceeding of the International
Conference of the Association of Computational Linguistics (ACL-99), College Park, Maryland.

13. Sabot, G. W. (1986). Bulk Processing of Text on a Massively Parallel Computer. In proceedings of
24th Annual Meeting on Association for Computational Linguistics, 128-135.

14. Van Rijsbergen, C. J. (1999). Information Retrieval. 2nd Edition. CD-ROM Version.
http://www.dcs.gla.ac.uk/Keith/Preface.html.

15. Yang, Y.; Carbonell, J. G.; Brown, R. D. & Frederking, R. E. (1998). Translingual Information
Retrieval: learning from bilingual Gespora, Artificial Intelligence, 103:323-345.

Article received: 2006-10-25

