
Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2007|No.1(12)

3 3

Maximizing Serial Ports for File Transfers between Computers: Design Issues

Moses E. Ekpenyong, Odudu-Obong Udocox
Department of Mathematics, Statistics and Computer Science, University of Uyo,

P.M.B. 1017, 52001, Akwa Ibom State, Nigeria., *e-mail: (ekpenyong_moses@yahoo.com.)

Abstract
Serial communication is by default meant for computer to modem

communication. One fascinating idea presented in this paper is the ability to effect
serial communication between two computers. We desire to maximize the serial ports
such that file(s) can be transferred directly between two computers connected with a
serial cable and connectors. The essence is to widen the understanding on how this kind
of communication can be made possible. Our methodology configures a null modem
cable in a way that the transmitting computer is deceived that it is transmitting a
modem. A C program is then written to manage the transmission. Test transmission
shows that file(s) can be effectively transmitted using serial communication.

Keywords: RS232 standard, Loopback test, Serial Communication, Synchronous and
Asynchronous signals

1. Introduction

Since the emergence of computers, there has been an intense need for sharing and transferring
of files from one terminal to another. A collection of electronically stored files can be moved by
physically moving the electronic storage medium, such as a flexible disk, hard disk, or compact disk
from one place to another or by sending the files over a telecommunication medium.

On the Internet, the File Transfer Protocol (FTP) is a common way to transfer a file or
relatively small number of files from one computer to another. Other means by which data can be
transferred from one computer to another include: (i) the use of an infrared wireless connectivity,
(ii) the use of Blue-tooth wireless connectivity, (iii) the use of flash disk or drive usage.

It has been observed that there has been a faithful replication of serial and parallel ports on
every laptop, desktop or server, and these parts are not intensely utilized due to the presence of
faster interfaces like Universal Serial Bus (USB), Ethernet, etc, [1], [2].

At first sight it would seem that a serial link is inferior to a parallel link, because it tends to
transfer less data in each lock cycle. However, it is often the case that serial data links can be
clocked considerably faster than parallel links to achieve a higher data rate. Some factors that allow
serial link to be clocked at a greater rate include: (i) clock skew between different channels is not an
issue, (ii) serial connections require fewer interconnecting cables (e.g. wires/fibres) and hence
occupy less space. The extra space allows for better isolation of the channel from its surrounding,
(iii) cross talk is less of an issue, because there are fewer conductors in close proximity.

In many cases, serial communication is a better option because it is cheaper to implement.
Many Integrated Circuits (ICs) have serial interface, as opposed to parallel ones, such that they have
fewer pins and are therefore cheaper.

The most important limitation of communications through serial port is the speed of data
transfer. Originally, serial port communication limited the maximum transfer speed to 20kbps,
which is quite slow, compared to transfer on an Ethernet, which could be 10Mbps or 100Mbps and
recently 1Gbps.

Another limitation is in the utilization of the PC bus bandwidth. Serial port communicates
with the computer via the PCI bus, the LPC bus, X-bus, or ISA bus. The PCI bus is either 32 or 64
bits wide, but the serial port only sends a byte (8 bits wide) a time. For the LPC bus, which is only
4-bits wide, the serial port only sends one byte at a time. It provides an efficient interface for serial
port transfers. The ISA bus is usually 16-bits wide as such the efficiency is intermediate as
compared with efficient LPC and inefficient PCI.

mailto:ekpenyong_moses@yahoo.com

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2007|No.1(12)

4 4

Most problems encountered in serial communications lies in the software and not the
hardware. Some of such software limitations are: (i) timing in program (hanging), (ii) timing in
program (incomplete transfer), and (iii) instrument’s termination character.

The justification of this paper is as follows:
(1) In the field of scientific and technical instrumentation, most devices are microprocessor

based and usually have an RS232 part for connection to the computer. This simply means
that serial products are easier to develop as compared to USB.

(2) Serial cables are longer in length (about 50ft), cheaper in cost and are much more cost
effective to produce than parallel cables. Serial cables transmits a ‘1’ as –3v to –25v and a
‘0’ as +3v to +25v, whereas parallel cables transmits a ‘0’ as 0v and a ‘1’ as 5v. Therefore
the serial port can have a maximum swing of 50v compared to the parallel port which has a
maximum swing of 5v, as such, information loss through cabling will not be much problem
for serial cables than they are for parallel cables, [3].

(3) Serial transmissions do not require many wires as opposed to parallel transmissions. If
devices need to be mounted a bit far from the computer, then 3-core cables will be a lot
cheaper than running 19 or 25 core cables. However, the cost of interfacing at both ends
must be taken into account, [3].

(4) Micro-controllers have in recent times been proven popular. Many of these have inbuilt
Serial Communication Interface (SCI), which can be used to communicate with the outside
world.

2. Serial Communication

Serial communication, like any other data transfer procedure, requires coordination between
the sender and receiver. For instance, when to begin the transmission and when to end it, when one
particular bit or byte ends and when another begins, when the receiver’s capacity has been
exceeded, and so on. A protocol defines the specific methods of coordinating transmission between
a sender and receiver. The scope of serial data transmission is large and a bit complex,
encompassing everything from electrical connections to data encoding. Such electrical connection is
through the RS232 standard, which is one of the oldest physical communications standard in the
computer world. The standard defines low-cost serial communication in a robust way where bits are
sent sequentially on a copper line. It was originally defined for connecting devices such as
computers, terminals, and printers to modems, [4].

The RS232 governs the physical and electrical characteristics of serial communications. This
specification defines several additional signals that are meant for information and control beyond
data signal ground. The RS232 standard defines 25 signal lines in its interface, although in practice
PCs rarely use more than nine of these lines. Just three of these lines - RD, TD, and GND are
required for bi-directorial serial data communication. The rest including the remainder of the basic
nine – DCD, DTR, DSR, RTS, CTS and RI which are designated for a variety of control purposes.

RS232 signals can be synchronous or asynchronous. Synchronous RS232 signals are
synchronized by a clock that dictates the timing of each bit that is sent. Both sides of the serial
connection share the timing provided by the clock, so each side is aware of the timing of the next
byte of data. Asynchronous RS232 signals are described by voltage changes that will identify the
start and stop of any byte of data. Within any byte of data, the receiver is actually applying a clock
to measure the elements of the data transmission and will sample the voltage level within the byte,
the number of times that correspond to the number of discrete bits of data it expects from the byte,
along with its framing and possible parity bits.

We will in this paper focus on Asynchronous RS232 serial port communications, primarily in
the PC world, and will emphasize the connectors and UARTs most frequently seen in today’s PCs.
Serial communication can be said to be the transmission and reception of data one bit at a time.
Today’s computer generally addresses data in bytes or some multiple thereof. A byte contains 8
bits. A bit is basically either a logical 1 or 0. The serial port is used to convert each byte to a stream
of ones and zeros. The serial port contains an electronic chip called a Universal Asynchronous

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2007|No.1(12)

5 5

Receiver/Transmitter (UART) that does the actual conversion. It converts parallel bytes from the
CPU into serial bits for transmission and vice versa. It also generates and strips the start and stop bit
appended to each character.

Serial Port speed

The speed of the serial port is largely determined by the UART used by it. The most typical
types of UARTs (the 16550 and 16650 UART) have theoretical maximum speeds of 115.2kbps and
460.8kbps respectively. The advanced UARTs have substantial speed advantages over earlier
design. However, for a serial connection to take advantage of an advanced UART, several
conditions are necessary:
(1) there must be a driver software present that is designed to handle the UART.
(2) the serial port’s buffer and trigger levels must be properly configured.
(3) wherever possible, hardware flow control should be used in preference to software flow

control.
(4) the peripheral involved must be fast enough to benefit from the UART.

These conditions if not met will cause a serial connection to operate below the theoretical

speed of its UART. Many other factors can influence port speed. In other words, significant speed
differences may result in actual use. On the hardware side these factors include the speed and
architecture of the computer’s CPU and peripheral need for high-speed serial ports. On the software
side, the type of code and operating system will affect port speeds. For example, DOS is expected to
have faster serial port transfer than windows.

Baud Rate

An important feature that determines the speed of the serial port is the Baud Rate. The Baud
Rate is the number of times the signal can switch states in a second. The Baud rate is configured as
bit per second. The transferred bits include the start bit, the data bits, the parity bit (if used), and the
stop bit. However, only the data bit is stored. Communicating computers must be configured to the
same Baud Rate before data can be successfully read or written. The default baud rate for any
communication is 9600bps. Other standard baud rates are 110, 300, 600, 1200, 2400, 4800, 14400,
19200, 38400, 57600, 115200, 128000 and 256000 bits per second. However, the value of the Baud
Rate is dependent on the serial port concerned.

There are available software used for file transfers, some of the products include: Fastlynx,
[5], Winxfer, [6], etc.

Serial Port Interfacing

A serial port is harder to interface than the Parallel Port. In most cases any device connected
to the serial port will need the serial transmission converted back to parallel so that it can be used.
This is done using a UART. On the software side, there are more registers that must be attended to
than on a Standard Parallel Port (SPP), [7].

3. Design Components and Methods

The Serial Port design pattern defines a generic interface with a serial port device. Our main
intention is to completely encapsulate the interface with the serial port hardware device. The
embedded software has to be able to interact properly with the hardware that is connected to the
serial port. Serial port is implemented with the Serial Port and Serial Port-Manager classes. The
Serial Port Manager maintains an array of Serial Port objects. Each Serial Port object manages the
transmit and receive buffers. The Serial Port Manager class implements the interrupt service
routine.

Implementing the serial port design pattern keeps the hardware dependent code confined to a
few classes in the system. The implementation of this design pattern is also explained in terms of

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2007|No.1(12)

6 6

handling of message transmission and reception. An important point to note here is that the code
executing in the context of the ISR is kept at the minimum.

Design Requirments
To design a serial communication medium, we need the following:
(1) A Null Modem Cable (with RS232 connectors at both ends)
(2) A functional serial port at both ends
(3) An x86-based processor with a minimal 64MB of RAM.
(4) Windows 9x/Windows NT/Windows ME/Windows 2000/Windows Xp.
(5) The data to be transferred which has to be singular at a given time. This is because both

terminals cannot be sending or receiving at the same time. If one terminal is sending then
the other terminal must be receiving and vice versa.

(6) A program written in any programming language to instruct the CPU to effect the transfer
or in general, effect the communication medium.

Protocol Definition

A protocol can be defined as an agreed upon format for transmitting or receiving data
between two devices. The protocol determines the following: (i) the type of error checking to be
used, (ii) data compression method, if any, (iii) how the sending device will indicate that it has
finished sending a message, and (iv) how the receiving device will indicate that it has finished
receiving a message.

From a user’s point of view, the only interesting aspect about protocols is that the computer
in use or device must support the right protocol and there must be a communication. In serial
communications there are 3 protocols that can be used to achieve a successful transmission:
1) Xmodem
2) Ymodem
3) Zmodem

Xmodem: This is one of the most widely used file transfer protocols. The original Xmodem
protocol uses 128-byte packets and a simple “Checksum” method for error detection. A later
enhancement (Xmodem-CRC) uses a mere secure Cyclic Redundancy Check (CRC) method for
error detection. Xmodem always attempts to use CRC first. Xmodem can also be called Modem2 or
Modem. Xmodem 1K is essentially Xmodem-CRC with 1K (1024 byte data blocks) packets.

Ymodem: Ymodem is essentially Xmodem 1K that allows multiple batch file transfers. On some
systems it is listed as Ymodem Batch. And a variant of Ymodem is Ymodem-g. The Ymodem is
designed to be used with modems that support error control. This protocol does not provide
software error correction or recovery, but expects the modem to provide the service. It is a
streaming protocol that sends and receives 1K packets in continuous streams until instructed to stop.
It does not wait for positive acknowledgement after each block is sent, but rather sends blocks in
rapid succession. If any block is unsuccessfully transferred, the entire transfer is cancelled.

Zmodem: Zmodem is generally the best protocol to use if the electronic service called supports it.
Zmodem has two significant features. It is extremely efficient and it provides crash recovery. Like
Ymodem-g, Zmodem does not wait for positive acknowledgement after each block is sent, but
rather sends blocks in rapid succession. If a Zmodem transfer is cancelled or interrupted for any
reason, the transfer can be restarted later and the previously transferred information need not be sent
again. Xmodem and Ymodem are half duplex protocols. This avoids buffer overrun problems that
result from attempting to exploit full duplex asynchronous file transfer protocols.

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2007|No.1(12)

7 7

Cable Interfacing
A Null modem is used to connect two DTE (Data Terminal Equipment) together. This is

commonly used as a cheap way to transfer files between computers using Zmodem Protocol,
Xmodem Protocol, etc, [8], [9], [11].

To deceive the computer, we configure the null modem as shown below:

D9 D25 D25
D9

3 2 TD → RD 3 2
2 3 RD → TD 2 3
5 7 SG → SG 7 5
4 20 DTR → DTR 20 4
6 6 DSR → DSR 6 6
1 8 CD → CD 8 1
7 4 RTS → RTS 4 7
8 5 CTS → CTS 5 8

Fig. 1. Interfacing of a Null Modem Cable

Fig. 1. Can be redrawn as below with respect to the shape of a D9 connector; to enhance
understanding;

Fig. 2. Redrawn version of fig. 1.

Figures 1 and 2 shows the wiring of the null modem cable. It only requires 3 wires (TD, RD, and
SG) to be wired directly (i.e. the transmitting and receiving computers connected directly), though
this makes it more cost effective to use with long cable runs.

The theory of operation of the Null modem operation is reasonably easy. The aim is to make
a computer think it is talking to a modem rather than to another computer. Any data transmitted
from the first computer must be received by the second; thus Transmit Data (TD) is connected to
Receive Data (RD). The second computer must have the same set-up, thus RD is connected to TD.
Signal ground (SG) must also be connected, so both grounds are common to both computers.

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2007|No.1(12)

8 8

Program Design
We here present the communication program algorithm.

Start

Input Graphics details
Input Serial Port details
Input File details

Port
Activated

?

Choice 1 = Send
Choice 2 = Receive
Choice 3 = Exit

Do you
Have a choice

?

Choice 1 Choice 2 Choice 3

Produce a
Beep

BA

Stop

You must have a
choice

No

No

Yes

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2007|No.1(12)

9 9

 A

Select a Port

Port 1 = COM 1
Port 2 = COM 2

Port 1?
No Port Address

= 0 x 2F8

Port Address
= 0 x 3F8

Yes

Set the Baudrate

Configure the Parity bit, Stop
bit and Databit

Activate Handshaking signals

Enter the File name
to be sent

Does the
File Exist?

No

Read a byte from the File
(1 Byte)

Yes

Is
(! Byte & 32))

?

No

A1

 A1

Get a character from
the stream

Is character
= EOF

?

Yes

Yes

No

 Output the character to
the Serial Port

Is

Byte = EOF
?

No

 Output character
 on Standard Output

File Transmitted

Close File

End

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2007|No.1(12)

10 10

B

Select a Port

Port 1 = COM 1
Port 2 = COM 2

Port 1?
No Port Address

= 0 x 2F8

Port Address
= 0 x 3F8

Yes

Set the Baudrate

Configure the Parity bit,
Stop bit and Databit

B1

Receive Character

Is character

= EOF
?

Yes

Yes

No

Output character on
Standard Output

 Output character to
 a file

Deactivate Handshaking

End

File Received

Close File

Activate Handshaking signals

Save the received Streams to
a File

Does the
File Exist?

No

Yes

Create the
file

Is
(: (Character & 1))

?

No

Read a character from the
Serial Port (1 character)

Test for Errors

B1

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2007|No.1(12)

11 11

4. System Implementation
Serial port communication implementation is somehow complex. However the extra

complexity is meant to make things ultimately more flexible and powerful.

The implementation is done using C programming language. Regardless of the Application
Programming Interface in use, the main steps to implementing the serial communication are the
same. These are:
(1) Open the serial port
(2) Configure the connection, [10]
(3) Data handling
(4) Close the port

A program to implement the program algorithms was coded in C programming language and tested.

System Testing

Our purpose here is to provide information on the basic instruction on how to test the RS232
serial port functionality for the communication software.

There are two ways to test the serial communication software:

Loopback Test: A loopback test is the ideal method to determine if a serial port is working
correctly or not. A loopback test made up of a loopback connector consisting of a connector without
a cable and includes an internal wiring to reroute signals back to the sender. This DB-9 female
connector would attach to a DTE device such as a personal computer. When the computer receives
data, it will not know whether the signals it received came from a remote DCE device set to echo
characters, or from a loopback connector. As such loopback connectors are used to confirm proper
operation of the computer’s serial port. Once confirmed, insert the serial cable to be used and attach
the loopback to the end of the serial cable to verify the cable. In this case, Transmit Data jumpers
with Receive Data, Request-to-send jumper with Clear-to-send and DTE-Ready jumpers with DCE-
Ready and Receive Line Signal will be detected.

Diagrammatically we have:

Fig 3. Loopback connector

Breakout Box Diagnostic: Another way to test a serial connection is by using a breakout box. The
breakout box is put in the mainline (i.e. between the PC and the host) and each end’s response is
watched as characters go out and come in.

System Evaluation

The essence of evaluation is determined if the serial communication software properly meets
our needs. That means our needs must be defined at the very first instance.

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2007|No.1(12)

12 12

This program can be evaluated based on some important attributes. It is these attributes that
determine the benefits, drawbacks and risks of using the program. Some attributes are:

Functionality
 Here we try to answer the question: does the program perform what we expected of it? As
an answer we would say “Yes”. Our soul aim is to ensure that data is transmitted and received
without errors or crashes. In a case where a new functionality needs to be added, the source code is
open source. Adding functionality to an existing program is usually less costly than building the
program from scratch.

Cost
 Cost is an important issue for anyone who is interested in deploying a program. Potential
costs for this communication software are: (i) installation cost, (ii) support/maintenance cost
(include troubleshooting), (iii) indirect costs (such as downtime and training), (iv) transition costs
(such as data transition and/or transition to upgrades), (iv) cost of any necessary hardware (purchase
and upgrades). Generally, the cost of deploying this serial communication software is not much
compared to other media of communication. A null modem cable can be bought here in Nigeria at a
cost of N4,500.00, or it could be constructed locally, provided there is a cable with RS232
connectors at both ends (DB9). The cost of maintaining serial communication software is not too
different from other programs. The maintenance/support should be focused more on the hardware
(i.e. the serial port, cables and connectors) rather than on the software. Often it is less costly to
troubleshoot and maintain hardware than to replace it.
 This software is less likely to incur indirect costs, except in cases were the host operating
system gets faulty in any way. All things being equal, this serial communication program can run
for hours without a down time. The training aspect here is not quite necessary except for individuals
who have some difficulty typing, using a mouse, or in most cases, understanding English. Hence
this software is quite easy to use. Usually as years go by, software become obsolete with respect to
some functionalities, and needs a kind of upgrade or transition. The cost of doing this varies with
software but for our serial communication software, the cost of upgrade solely depends on what
functionality is to be added or subtracted. The cost of hardware needed varies with the area in
question e.g. a null modern cable of N4,500.00 in Nigeria will cost approximately 35.00 dollars in
US. The most important issue is to know the hardware needed where to get it and have some
money, not too much though.

Maintenance / Longetivity
 Few useful programs are completely static. They need changes, new uses are continuously
created, and the programs must be maintainable into the future. This serial communication program
can be maintained both in the hardware and the software thereby increasing its longetivity.

Reliability
 Reliability measures how often the program works and produces the appropriate results.
Reliability is difficult to measure and strongly depends on how the serial communication software is
used. The reliability of this communication medium was measured. Though roughly estimated, has
a fair reliability level, but could be improved with further research and funding.

Scalability
 Scalability, in this context, suggests the size of data or problem the program can handle.
This communication software can handle any size of data stream but the user has to know that the
time it takes to completely transfer a file is directly proportional to the size of the file. This
communication software “may not” be able to handle multimedia files or images, but with
additional functionalities, this can be possible.

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2007|No.1(12)

13 13

Flexibility and Customizability
 Flexibility and customizability are highly interrelated attributes of this communication
software. By being flexible means, the program can be used to handle circumstances that it wasn’t
originally designed for, while, its customizable ability measures how well the communication
software can be customized to fit in a specific environment.

6. Conclusion

Serial Communications is not a new development. Traditionally, it is designed for computer-
modem communication. As such the speed requirement is not much of a factor. As years went by
and previous inventions and discoveries in the computer industry become obsolete in the new era,
more researches carried out on the capability of the serial port reveal that more can be done. For this
reason, communication can be effected from a computer to a computer, computer to a camera,
computer to a phone, etc, all via serial port.

On a platform where speed is a factor and a prerequisite for communication, serial
communication is not recommended due to its bit by bit transmission. The UART buffer is anything
between 16 and 64KB. This is quite small and will result in large documents taking a while to be
completely transmitted. A situation where flow control is not enabled, then there is an evident
occurrence of an overrun Error. Serial Communication is not also recommended for long distance
transmission. The longest distance it can go is 50ft.

Despite all these, Serial Communication is recommended in platforms where all other means
of communication are not supported or enabled. It is also recommended for a computer-camera and
computer-phone communication or for car use where the issue of being slow may actually be
beneficial.

5. References
1. http://www.lvr.com
2. www.lavalink.com
3. http://www.beyondlogic.org/serial/serial.htm
4. http://www.netbsd.org/Documentation/Hardware/Misc/serial.html#connect
5. http://sewelldirect.com/
6. http://www.wcscnet.com/WXferBro.htm
7. http://www.eg3.org/serial.htm
8. http://www.arcelect.com/rs232.htm
9. http://www.electrosofts.com/
10. http://www.8052.com/tutser.phtml
11. http://www.captec.co.uk/pdf/serial-communications-tutorial.pdf

Article received: 2006-10-28

http://www.lvr.com/
http://www.lavalink.com/
http://www.beyondlogic.org/serial/serial.htm
http://www.netbsd.org/Documentation/Hardware/Misc/serial.html#connect
http://sewelldirect.com/
http://www.wcscnet.com/WXferBro.htm
http://www.eg3.org/serial.htm
http://www.arcelect.com/rs232.htm
http://www.electrosofts.com/
http://www.8052.com/tutser.phtml
http://www.captec.co.uk/pdf/serial-communications-tutorial.pdf

	Abstract
	1. Introduction
	2. Serial Communication
	Serial Port Interfacing
	3. Design Components and Methods
	Ymodem: Ymodem is essentially Xmodem 1K that allows multiple batch file transfers. On some systems it is listed as Ymodem Batch. And a variant of Ymodem is Ymodem-g. The Ymodem is designed to be used with modems that support error control. This protocol does not provide software error correction or recovery, but expects the modem to provide the service. It is a streaming protocol that sends and receives 1K packets in continuous streams until instructed to stop. It does not wait for positive acknowledgement after each block is sent, but rather sends blocks in rapid succession. If any block is unsuccessfully transferred, the entire transfer is cancelled.
	D9 D25 D25
	D9

	
	 Program Design

