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Annotation:
In this papre We propose a neural network optimization algorithm for independent

component analysis(ICA) which can separate mixtures of sub- and super- Gaussian
source signals with self-adaptive nonlinearities. The ICA algorithem in the framework of
natural Riemannian gradient, is derived using the parameterized Weibull density model.
The nonlinear function in ICA algorithem is self-adaptive and is controlled by the shape
parameter of Weibull density model. Computer simulation results confirm the validity
and high performance of the proposed algorithm
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1-INTRODUCTION
The problem of independent component analysis (ICA) has received wide attention in various

fields such as biomedical signal analysis and processing (EEG, MEG, ECG), geophysical . data
processing, data mining, speech recognition, image recognition and wireless communications [4, 6,
17, 27]. In many applications, the sensory signals(Observations obtained from multiple sensors) are
generated by a linear generative model which is unknown to us . In other words, the observations
are linear instantaneous mixtures of unknown source signals and the objective is to process the
observations in such a way that the outputs correspond to the separate primary source signals. The
operation starts with a random source vector U(n) defined by ],...,...,,[)( 21 mUUUnU =  where the

m components are supplied by a set of independent sources. Temporal sequences are considered
here; henceforth the argument n denotes discrete time. The vector U is applied to a linear system
whose input-output characterization is defined by a nonsigular m-by-m matrix A, called the mixing
matrix. The result is an m-by-1 observation vector X(n)  related to U(n) as follow  X=AU where

T]X,...,X,[XX m21= . The source vector U and the mixing matrix A are both unknown. The only
thing available to us is the observation vector X. Given X, the problem is to find a demixing matrix
W  such that the original source vector U  can be recovered from the output vector Y  defined by
Y=WX   where T

mYYYY ]...,,,[ 21= . This is called the blind source separation. The solution to the

blind source separation is feasible, except for an arbitrary scalling of each signal component and
permutation of indices. In other words, it is possible to find a demixing matrix W whose individual
rows are a rescalling and permutation of those of the matrix A. that is, the solution may be
expressed in the form Y=WX=WAU→DPU  where D is a nonsingular diagonal matrix and P is a
permutation matrix.

Since Jutten and Herault[21] Proposed a linear feedback network with a simple unsupervised
learning algorithem, several methods have been developed .

Cichocki el al. [13;14] proposed robust, flexible algorithm with equivariant properties. Comon
[15] gave a good insight to ICA problem from the statistical point of view. Bell and Sejnowski[7]
adopted an information maximization principle to find a solution to ICA problem. Maximum
likelihood estimation[1;6;25] was proposed by Pham et al. an was elaborated in [23;26]. The
nonlinear extension of PCA  was extensively studied in [21;24]. Serial updating rule was introduced
by Cardoso and Laheld[8;27] and the resulting algorithm was shown to have equivariant
performance. Independent, natural gradient was proposed and applied to ICA by Amari et al.
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[5;17;19]. Conditions on cross cumulants for the separation of the source signals were investigated
in [1;2;3;4;23;10;9].

2-DERIVATION OF NATURAL GRADIENT BASIC LEARNING RULES
Let us consider a linear feedforward memoryless neural network wich maps the observation

X(n) to Y(n)
Y(n)=WX(n)  (1 )

Where (i,j)th element of the matrix W, i.e., ijw  represents a synaptic weight between

)()( nxandny ji . In the limit of zero noise, for the square ICA problem (equal number of  sources

and sensors, the result can be extended to the case m>n) maximum likelihood or mutual information
minimization suggest the following loss function [12]:
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With this definition, the gradient of the loss function (2) is
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where f(y(n)) is the element-wise function whose ith component is ))(( nyf ii .

The natural Riemannian gradient (denoted by ))((
~

nWL∇ )learning algorithm for W(n) is given by
[13;8;2]
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3-WEIBULL MODEL FOR SOURCES
Optimal nonlinear activation function ))(( nyf ii is calculated by (3). However, it required

the knowledge of the probability distribution of source signals which are not available to us. A
variety of hypothesized density model has been used. For example, for the supper-Gaussian source
signals, unimodal or hyperbolic-Cauchy distribution model [7] leads to the nonlinear function given
by

)).(tanh())(( nynyf iii β= (6)

Such sigmodal function was also used in [7]. For sub-Gaussian sorce signals, cubic nonlinear

function )())(( 3 nynyf iii = has been a favorite choice. For Mixtures of Sub- and super-Gaussian

source signals, according to the estimated kurtosis of the expected signals, nonlinear function can be

elected from two different choices [15;16]. (for example, either  )())(( 3 nynyf iii =  or

)).(tanh())(( nynyf iii β= ). Several approaches [18;10;11] are already available.

This paper present a flexible nonlinear function derived using Weibull density model. It will be
shown that the nonlinear function is self-adaptive and controled by Weibull shape parameter. It is
not a form of fixed nonlinear function.
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3.1. THE WEIBULL DISTRIBUTION
The weibull probability distribution is a set of distributions parameterized by a positive real

number c which is usually referred to as the shape parameter of the distribution. The shape
parameter c controls the peakiness of the distribution. The probability density function (PDF) for
Weibull is described by
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It is necessary c be greater than –1, for otherwise the integral of  ),,;( 0 αζcyp  between

θθθ �ˆ== yandy  will be infinite. The standard form of the distribution will have 00 =ζ  and

1=α  so that the standard density function is
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The distribution of  y now depend on the shape parameter c alone. The plots of  the standard density
function in (8) for c=0.25, 0.5, 1, 1.5, 2, 3, 4, 5 are presented in figure 1 and 2 respectively.

Fig.1:The plots of  the standard Weibull density function for c=0.25, 0.5, 1, 1.5
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Fig2.: The plots of  the standard Weibull density function for c=2, 3, 4, 5

3.2 The Moments Of  Weibull Distribution
 In order to fully understand the Weibull distribution, it is usefull to look at its moments (
specially 2nd and 4th moments which give the kurtosis). The nth moment of  Weibull distribution is
given by
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the moment ratios, coefficient of variation, and standard cumulants 
2/

2
r
r

k

k
 of the standard

distribution in (8) are of course the same as those of the distribution in (7).

3.3   Kurtosis And Shape Parameter
The kurtosis is anondimensional quantity. It is measures the relative peakdness or faltness of

a distribution. A distribution with positive kurtosis is termed leptokurtic( super-Gaussian). A
distribution with negative kurtosis is termed platykurtic(sub-Gaussian). The kurtosis of the
distribution is defined in termsof the 2nd-and 4th –order moment as
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where the constant term –3 makes the value zero for the standard normal distribution. For Weibull
distribution, the kurtosis can be expressed in terms of the shape parameter, given by
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The plot of kurtosis )(ck versus the shape parameter c for leptokurtic and platykurtic signals are
shown in figure 3.
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Fig 3:The plot of kurtosis )(ck versus the shape parameter c for leptokurtic and platykurtic signals.

The activation function for Weibull distribution in (8) is given by
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4. COMPUTER SIMULATION RESULTS
Consider the system involving the following three independent sources
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The mixing matrix A is
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The algorithm was implemented using the following conditions:
• Initialization. The weights in the demixing matrix W were picked from a random number

generator with a uniform distribution inside the range [0.0,0.5].
• The learning rate parameter was fixed at 1.0=η
• Signal duration. The time series produced at the mixer output had a sampling period 10-4s

and contained N =65,000 samples.
Figure (4) displays the waveforms of the source signals and the signals produced at the output of the
demixer. It can be observed that after 3000 iterations, source signals are well separated.

Fig.4: the original and demixed signals
5. CONCLUSION

We have proposed ICA algorithm (in the framework of natural Riemannian gradient) where the
self-adaptive nonlinear function eas derived using Weibull density model for the probability
distributions of the source signals. We have shown that the proposed ICA algorithm can separate
the mixtures of sub-and super-gaussian signals with self adaptive nonlinearities which is controlled
by Weibull shape parameter.
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