
Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2007|No.1(12) 
 

 22

A Study of statistical description of interferometric SAR signal  

S. REDADAA, A. BOUALLEG and M. BENSLAMA 

 ENST de Bretagne, Technopôle Brest-Iroise, CS 83818 –29238 Brest Cedex 3, France 
Email : salah.redadaa@enst-bretagne.fr 

 
Abstract: Interferometric SAR data are frequently multi-look processed for speckle 

reduction and data compression. The statistical behavior of an interferometric signal is 
for great interest since it allows predicting its performance, and yet, few papers deal 
with the signal nature. This paper deals with the statistical behavior of the phase 
difference between two interferometric signals. The probability density function of 
interferometric signal is derived stating its dependence on the coherence and the mean 
of the phase difference. Besides, the Cramer-Rao lower bound  (CRB) is also evaluated.  
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1. Introduction 
The main feature of a SAR system, in front of conventional systems, is the azimuth resolution 
increase on the basis of carrying out a recording of complex data, as well as a coherent processing 
of such a data. Despite the SAR images complex nature, its phase does not carry information at all. 
On the other hand, SAR images are contaminated by speckle, a noise-like signal, although it is a 
true electromagnetic measurement [1]-[4]. 

The combination of different SAR images leads to multichannel SAR imagery. Any change in 
the sensor’s geometry, in the operating frequency, in the employed polarization or the reflectivity 
scene will produce a change within the SAR image. In those cases, in which the changes gives rise 
to correlated images, the phase difference between the SAR images will contain useful information. 
When the SAR images are completely correlated, each of the individual images is contaminated by 
speckle, but the phase relation between them will contain useful information free of degrading 
factors. 

There exist two main types of multichannel SAR imagery: SAR interferometry (InSAR) [5] and 
SAR polarimetry (PolSAR) [6]. The combination of these two data types, which called Polarimetric 
SAR Interferometry (PolInSAR) [7], is based on combining the advantages of each technique. This 
paper will be focused specially in InSAR. 

SAR interferometry is basically based on the formation of an interferogram by using two 
complex SAR images of the same area, but acquired from slightly different positions. Therefore, the 
imagery geometry changes from the first SAR image to the second one. This change produces the 
phase difference between both SAR images to contain information about scene’s topography. This 
system configuration is also called Across-Track interferometry [8]-[12], in contrast with Along-
Track interferometry [13]-[15]. The two complex SAR images can be acquired either, 
simultaneously using two antennas in the same platform (single-pass interferometry) [16]-[17], or 
using the same system in repeated passes over the same scene (repeat-pass interferometry) [18]. In 
the later case, the phase difference between both SAR images will be also depend on possible 
scatterer variations between the different passes. 

Due to the lack of knowledge about the detailed structure of the scatterer being imaged by the 
SAR system, it is necessary to discuss the properties of the scattered field statistically. The statistics 
of concern are defined over an ensemble of objects, all with the same macroscopic properties but 
differing in the internal structure. For a given SAR system imaging a particular scatterer, the exact 
value of each pixel can’t be predicted, but only the parameters of the distribution describing the 
pixel values. Therefore, for a SAR image, the actual information per pixel is very low as individual 
pixels are simply random samples from distributions characterized by a set of parameters. 

This paper is organized as follows. Section 2 introduces the geometric approach of SAR 
interferometry. In Section 3, we describe the statistical behavior of the phase difference. The 
probability density function of interferometric signal, in both single-look and multi-look cases, will 
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be derived stating its dependence on the absolute value of the correlation coefficient, and the mean 
of the phase difference. Besides, the Cramer-Rao lower band (CRB), is also derived. Finally, a 
conclusion is given. 

 

2. SAR interferomerty  

The interferometric SAR system is based on the geometry shown by Fig. 1. The use of this 
geometric approach makes possible to see the relationship between the surface and the sensor 
geometries in order to obtain the information contained within the SAR images difference. This 
approach is based on several simplifications as to consider a flat Earth or not considering signal 
spectral properties. Hence, the approximation is not valid for satellite geometries with large swaths 
or for airborne geometries. Detailed developments on SAR interferometry can be found in [3], [5], 
[8]-[9], [11]-[12]. 

Each of SAR platforms denoted by  and  respectively, acquires a SAR image. The two 
antennas are separated by a given baseline , observing the same point 

1T 2T
B P  at range r  from the first 

platform and at range rr Δ+  from the second one. For the geometric approach, the observed point P  
will be assumed to be a point scatterer. Therefore, the two SAR images are 
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Fig. 1: Interferometric SAR system geometry. 
 

Both SAR images observe the reflectivity scene from two different locations. Therefore, a given 
pixel of the first SAR image does not correspond to the same reflectivity contained in the pixel of 
the second image. There exist several techniques developed to solve this problem, known as image 
co-registering. In a classical approach, both images are registered, with a pixel accuracy, by using 
cross correlation techniques. In many cases, these techniques are not enough to obtain quality 
interferograms. To fulfil the quality requirements, sub-pixel registration techniques are employed 
[10], [19]. Once the SAR image pixels refer to the same area, the complex interferogram is defined 
as 

( ) ( ) ( ) ( ) ( ) ( )( )( )22211122211122
*
211 ,,exp,,,, rxrxjrxsrxsrxsrx φφ −=1s  

Owing to the fact that both SAR images observe the same point P from slightly different 
positions, the phase of each SAR can be written, taking into account the geometry depicted by Fig. 
1, as 
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Assuming that the phase due to the scatterer, 1sφ  and 2sφ , are equal, the interferometric phase (i.e., 
the phase difference) is very sensitive measure for range difference 

(4)kr π
λ
πφφ 24

12 +Δ−=−=φΔ  

Owing to the circular nature of any phase measurement, the interferometric phase given by (4) is 
ambiguous within integer multiples of π2 . In order to be able to relate the interferometric phase to 
the topographic height, the correct multiple π2  has to be added. This is done in the phase-
unwrapping step after removing the flat-earth expected phase from the interferogram [20]-[21].  

To derive the information content in φΔ , it is necessary to see the dependence of rΔ  on the 
different parameters of the imaging geometry given by Fig. 1. Assuming this geometry, we have  

( ) ( ) 222
nr BBrr +−=Δ (5)r +  

where 
( )
( )−=

−=
αθ
αθ

sin
cos

B
B

r
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⎩
⎨
⎧

B
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wherein λ  is the radar wavelength, θ  is the look angle and α  represents the tilt angle.  is called 
parallel baseline, whereas  is the perpendicular baseline. We suppose that the contribution of the 
term 

rB

nB
2rΔ  can be neglected in front of the parameter r .  Therefore, rΔ  can be simplified as 

( )αθ −−= sin
2

2
BΔ

r
Br  

The geometric approach for InSAR is based on a spaceborne system. In such a case, the 
difference between the baseline  and the range B r  is about several orders of magnitude, allowing 
to neglect the first addend in (7). Hence, rΔ can be approximated by 

(7)

(8)( )αθ −−≈Δr sinB  
With this approximation, the phase difference φΔ , can be written as 

(9)( ) kB παθ
λ
π 2sin4

+−=φΔ  

The equation  (9) corresponds to the phase of a single pixel in the interferogram. However, this 
phase is not useful as the wavelength is so short that the phase is wrapped, apart from the fact that is 
also contains range information. 
From (9), the interferometric phase error can be expressed as 

(10)( )δθαθ
λ
π

−= cos4 BϕδΔ  

Since the elevation error is evaluated as [3], [5] 

( ) ( )
( ) ϕδ
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z
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3. Probability density of interferometric phase 

In this section, we introduce the probability density function (pdf) of the phase difference in both 
single-look and multi-look cases. First a data model is presented defining the statistical types of 
variables cartographic radars deal with. This data model is based upon a zero-mean Gaussian 
hypothesis .The signal emitted by a radar illuminate a given area, commonly called resolution cell, 
which is limited by the pulse length and the look angle. The received signal is reflected by 
elementary particles of the resolution cell, called scatterers. In this paper, we study the 
interferometric signal depending on statistical behavior of these scatterers. This analysis is carried 
out in both single-look and multi-look cases.  

 
3.1 Single-look 

The information received by the two interferometric sensors can be modeled [22]-[23] by 
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where  and  are zero-mean Gaussian distributed, has a Rayleigh distribution of  parameter  
, and 

ix iy ir
2
rσ

iφ  is a uniform random variable distributed on the interval [ [ππ ,− . As the sum of independent, 
identically distributed sacatters are complex Gaussian distributed by the Central Limit Theorem, the 
probability density function of  bivariate  complex Gaussian vector s is [24] 
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where  is the data vector which is an outcome of the random variable ,[ Tsss 21= S K  is the 
covariance matrix of s , .  is the determinant of ( ). , and ( )T. and ( ) T*.  represent the transpose and the 
conjugate transpose of ( ). , respectively. Considering that the real and imaginary parts of  are 
uncorrelated, let us define the following notation 
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where  stands for the expected value of {}.E ( ). . Thus, the signal s is a second-order circular process 
since, by definition, for all R∈φ , the moments of s  defined by ( )iii jrs φexp=  up to second order are 
identical to the corresponding moments of r  [25]. Note that since σ and η  are not null,  is 
partially decorrelated. 

is

Let us introduce now the correlation coefficient that will be needed to evaluate the covariance 
matrix K . The complex correlation coefficient statically measures the degree of relationship 
between two sensors. It is, thus, defined by the expected value of the inter-sensor cross product as 
follows 
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where γ  is the coherence, and ψ  is the phase of the complex correlation coefficient. Note that the 
correlation coefficient can be written from (14) as follows 
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Likewise, the covariance matrix has the form 
(17){ } ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= 2

2
*

21

21
2
1*

σγσσ
γσσσssE  

then, the single-look phase difference is obtained by interfering both sensors as 
(18)( )*

21arg ss=Δφ  
In the following, the single-look phase distribution is derived. To do so, we consider the definitions 
given by (14). The inverse of the covariance matrix K  defined by (17) is  
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   Changing the rotational coordinates by means of the transformation 
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Its Jacobian matrix determinant is , and supposing that 21rr σσσ == 21 , the joint pdf becomes 
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In order to derive the single-look phase distribution, the following changes of variable are used 
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Whose Jacobian matrix determinant is  
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where 
(26)( )ψφγ −Δcosβ =  

Integrating with respect to z  and , v
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where  is a modified Bessel function of the second kind. Then (27) gives ( )zK0
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which depends on φΔ . In order to evaluate the phase distribution, we have 
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So, finally the single-look phase distribution is  
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Fig.2 depicts the single-look phase difference distribution for ,7.0,4.0,0=γ and 0  ,90.0 =ψ . It shows 
that for high coherence values, the mean-centered distribution gets sharper and narrower resembling 
to a delta function, while for low coherence values, the phase distribution tends to a uniform 
distribution. 
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Fig. 2 Interferometric phase pdf for different coherence values. 
 

On the other hand, the theoretical single-look variance of a fluctuating signal was derived by Tough 
et al. [23] and takes the form 
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Fig. 3 shows the numerically computed standard deviation of φΔ vs. coherence for 0  =ψ .   
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Interferometric phase standard deviation. 
 

3.2 Multi-look analysis 

Multi-look techniques arise as a way to decrease the noise level of a single look process.  
consecutive samples of the interferometric signal envelope are taken to average the final value. This 
low-pass filter technique is regarded as a likelihood estimator [23] which corresponds to the peak of 
the correlation function. 

N

Let us generally define s  as a  complex data matrix with a (Nxq) ( )K,0ℵ  distribution. Thus, the 
multi-look likelihood estimator is obtained by 
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Since  are independent, identically complex ( ) ( ) ( )Nsss ,...,, 21 ( )K,0ℵ  distributed, W has a Wishart 
probability distribution of covariance matrix 
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K , and  degrees of freedom [26]. Its complex 
probability density function (pdf) is given by 
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where Tr  denotes the trace of , ( ). ( ). K  is defined by (17),  is the dimension of , and q ( )is ( )2NqΓ  is 
the multivariate gamma function defined as [27] 
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Regarding the interferometric case ( , and expressing 2=q ω  as 
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then, the multi-look phase difference φΔ  is the argument of 12ω  
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21exp ωφα =Δ≡ j12ω  
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where α  is defined as the absolute value of 12ω . Considering the above equations, the distribution 
of Z is given as 

( )
( )

( ){ }zKTr
KN

zN
z

N
q

qNqn
1

1

exp
2

−
−−

−
Γ

= (37)PZ  

To determine, the multi-look phase distribution, the expression (35) is inserted into (33) 
obtaining 
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Using the following changes of variable 
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The multi-look phase distribution is derived by integrating (40) over u and  and is 
evaluated as      [28]-[31] 
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where ( )2
12 ,21;1, βNF  is a Gauss hypergeometric function [32], and β  is defined by (26). In [2] and 

[23], another expression, involving a finite summation based upon the characteristic function of 
Fourier transform domain, is derived. In this case, the marginal pdf is 
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The phase distribution, (40), involves the hypergeometric function, which must be calculated by 
numerical quadrature. By contrast, (41) involves only a finite summation that is more convenient 
for data analysis. Note that when , the summation contains no terms and the distribution 
reduces to the single-look case (29). Fig.4 shows the phase difference distribution tends to a Dirac 
delta function as the number of looks increases.   

1=N

 
 
 
 
 
 
 
 
 

 
 

Fig. 4 Interferometric phase pdf for different number of look for ( )0,8.0 == ψγ . 

 

3.3 Cramer Rao lower bound 
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Here, we evaluate the Cramer-Rao lower bound (CRB) of the phase difference estimation using 
the signal data model introduced previously, i.e., for a zero-mean complex Gaussian circular signal 
s . 

The variance characterizes the second-order statistical behaviorof an estimator, and is often used 
to know its efficiency. Indeed, an unbiased estimator  is efficient from a statistical point of view 
when its variance reaches the minimum value. This asymptotical minimum value id defined by the 
CRB [33, 34] as 
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where ( )θI  is the Fisher  information matrix given by 
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where ( θ;sP  is the joint distribution function of s and θ . 
In this paper, we derive the CRB of phase difference estimator for a single-look distribution. 

The log-likelihood function of (13) is 
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correlation. Thus, γ  does note change during the evaluation of the CRB. So, the expected value of 
(45) is 

(45)

( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∂

∂
=

⎪⎭

⎪
⎬
⎫

∂
*
212

*2

2
21

2
21 Re

2,ln
ssE

D
ssPS

τ
γσσ

τ⎪⎩

⎪
⎨
⎧∂ 2

E  (46)

Next, by evaluating the second derivation of  and since by definition *γ
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Finally, using the following relation between the SNR and the coherence  [18] 
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The CRB of the time delay is 
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Since ωτφ =Δ , the CRB of the phase difference is 

(51)( ) ⎟
⎠
⎞

⎜
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SNRSNR 2
111φΔvar

( )

 

Now, we derive the CRB of phase difference estimator for a multi-look distribution. The 
same assumptions for the single-look case are considered here. This minimum variance bound is 
obtained as follows  

( )
1

2

2 ;ln
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⎟

⎠
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⎜
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⎝

⎛
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⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∂

∂
−≥

τ
τzP

E Z (52)var τ  

First, we determine the log-likelihood function of (37) 
( ) ( )zKNTrconstz 1−−= (53)PZln  

where 1−K  is defined by (19). Evaluating the trace of the product, we get 
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( ) { }( )12
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111

2
22

Re2 zzz
D
Nconstz γσσσσ −+−=ln PZ  

Note that when deriving (54), only γ depends on the integration variable τ . In 
addition, we suppose that we are close to the peak of correlation. Thus, γ  does note change during 
the evaluation of the CRB. So, the expected value of (54) is 

(54)
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The expected value of (55) only affects to  since 12z γ  is not random variable. In order to 
determine its value, we suppose that the backscatterer signal process is ergodic. Thus, the coherence 
coefficient does not depend on the observation time. The expected value of  is 12z
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Evaluating the second derivation of , and inserting (56) into (55), we get *γ
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 (57)

Finally, inserting (49) into (57), the CRB of the time delay is 

⎟
⎠
⎞

⎜
⎝
⎛ +≥

SNRSNRN 2
11

.
1

2ω
var τ  (58)

Since ωτφ =Δ , the CRB of the phase difference is 
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⎠
⎞
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11

.
1φ (59)Δvar  

 

Conclusion 

In this paper, after a general presentation of SAR interferometry, the mutual relationships between 
the interferometric phase and the different parameters of the imaging geometry are presented. 

 The probability density function of interferometric signal, in both single-look and multi-look 
cases, is derived and discussed for a data model which is based upon a zero-mean Gaussian 
hypothesis. We have also evaluated the Cramer-Rao lower bound of the phase difference estimation 
using the same signal data model.  
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