
Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2007|No. 3(14)

64

Input Variable Selection using Parallel Processing of RBF Neural
Networks (PP-RBFNNs)

M. Awad, H. Pomares, I. Rojas, O. Salameh, and M. Hamdon

Dept. of Computer Architecture and Technology, Granada, Granada, Spain
awad@atc.ugr.es

Faculty of information Technology University of Arab American University , Palestine
m.awad@aauj.edu

Abstract.
In this paper we propose a new technique focused on the selection of the important

input variable for modelling complex systems of function approximation problems, in order
to avoid the exponential increase in the complexity of the system that is usual when dealing
with many input variables. The proposed parallel processing approach is composed of
complete Radial Basis Function Neural Networks (RBFNNs) that are in charge of a
reduced set of input variables depending in the general behaviour of the problem. For the
optimization of the parameters of each RBFNN in the system, we propose a new method to
select the more important input variables which is capable of deciding which of the chosen
variables go alone or together to each RBFNN to build the parallel structure, thus
reducing the dimension of the input variable space for each RBFNN. We also provide an
algorithm which automatically finds the most suitable topology of the proposed parallel
processing structure (PP-RBFNNs) and selects the more important input variables for it.
Therefore, our goal is to find the most suitable of the proposed families of parallel
processing architectures in order to approximate a system from which a set of input/output
(I/O). So that the proposed (PP-RBFNN) outperforms other algorithms not only with
respect to the final approximation error but also with respect to the number of computation
parameters of the system.

Keywords:
 Parallel Processing, input variable selection, radial basis function neural networks

1 Introduction

In many real world practical modelling problems, it is often possible to measure the value of
many physical signals (variables), but it is not necessarily known which of them are relevant and
required to solve the problem [1]. An excessively high computational complexity can occur when
developing multivariate models for industrial or medical applications when the best set of inputs to use
is not known. The main problems to face here are that when the input dimensionality increases, the
computational complexity and memory requirements of the model increase (in some cases even
exponentially); learning is more difficult with unnecessary inputs.

Neural networks can be defined as an architecture comprising massively parallel adaptive
processing elements interconnected via structured networks. The main weakness of a neural network
lies in its totally flat structure. A direct consequence of such structural simplicity is often a huge
network, with an excessively large number of hidden units. One effective solution is to incorporate
proper parallel processing structure into the network. Parallel processing structures have a very rich
variety of applications in computing since they provide representations that can be composed,
modified, and manipulated in a very flexible way [2,7,8,9].

The main problem to solve is that when the number of input variables increases, the number of
parameters usually increases in a very rapid way, even exponentially. This phenomenon named the

mailto:awad@atc.ugr.es
mailto:m.awad@aauj.edu

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2007|No. 3(14)

65

curse of dimensionality [5] prevents the use of the majority of conventional modelling techniques and
forces us to look for more specific solutions. To deal with this problem, input variable selection (IVS)
procedures try to reduce the dimension of the input variable space, identifying and removing as much
irrelevant and redundant data as possible, thus reducing the dimensionality of the data and allowing
learning algorithms to operate faster and more effectively.

Input variable selection (IVS) has been researched intensively and has been applied to various
problems such as data mining, knowledge discovery, pattern recognition, etc. One of the most popular
methods used to select input variables is principal component analysis (PCA). Several authors have
also worked to select the most important input variables in function approximation problems. Pomares
et al in [3] presented a method to obtain the structure of a complete rule-based fuzzy system for
specific approximation accuracy of the training data, deciding which input variables should be taken
into account how many membership functions are needed in every selected input variable in order to
reach the approximation target. The main drawback of that method is that it only could be applied to
grid-based fuzzy systems with a limited number of input variables. Vehtari and Lampinen in [1]
proposed to use posterior and marginal posterior probabilities obtained via variable dimension Markov
chain Monte Carlo methods to find out potentially useful input combinations and to do the final model
choice and assessment using the expected utilities computed by using the cross-validation predictive
densities. Also noteworthy is the work made by Chen and Wang in [4], who proposed that for a given
set of input and output variables, a fuzzy partition associating fuzzy sets with each input variable.

In our particular case, parallel processing architectures will be used to provide a suitable
construction of parallel processing Radial Basis Function Neural Networks (PP-RBFNNs) which
improve significantly the performance of complex function approximation problems. In this paper we
show how our PP-RBFNN is capable of modelling complex systems without the above mentioned
problems inherent to the increase of the number of input variables. For that purpose, we propose IVS
method which tries to relate every dimension of the input data to the output target (as a function of one
dimension) and divides the data of this dimension into parts. For each of these parts the distance is
calculated between the maximum and minimum values of the output that belong to the input data of
each dimension in each part and the average of all the distances in all parts. When the average has
small value; the variable is more important and must be selected. The variables with big average are
variables of noise and should be eliminated. The number of RBFNNs depends on the number of these
variables and which of these go alone or together in a RBFNN. The process of deciding which of the
variables go alone or together depends, in general, on the calculation of the distance variance of each
variable or set of variables related to the output target.

We also propose an algorithm which automatically finds the most suitable topology of PP-
RBFNN structure and selects the important input variables for it. Therefore, our goal is to find the most
suitable of parallel processing architectures in order to approximate a system from which a set of
input/output (I/O) data has been extracted.

The paper is organized as follows. Section 2 describes the basic building modules and the parallel
processing structures of RBFNN. Section 3 presents the new procedure for IVS for our PP-RBFNNs.
Section 4 provides a method to select groups of input variables and the number of RBFNNs. Section 5
presents the method of parameters optimization of each RBFNN. Finally, Section 6 presents examples
of how the proposed methodology is capable of finding the most suitable PP-RBFNN architectures
with best final approximation error and less number of computation parameters of the system.
2 Architecture of the PP-RBFNN

In classical RBFNNs every neuron in the hidden layer receives all the input variables of the
network. Nevertheless, the interconnections in the PP-RBFNN structure between input variables and
the hidden layer are limited and located. The advantage of the PP-RBFNN structure consists of the fact
that the problem is divided into many problems that are connected in parallel. Every problem is

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2007|No. 3(14)

66

presented a RBFNN. All the RBFNNs have a total output that is the output of the PP-RBFNN
structure. This division of the system limits the quantity of the information of the previous layer. In
general, to construct a PP-RBFNN structure to solve problems of function approximation two basic
steps are needed:

• The identification of its structure. The number of RBFNNs depends on the number of the
selected input variables and on which of these variables go alone or together to each RBFNN of
the PP-RBFNN system).

• The estimation of the parameters of every RBFNN (centres Scr , radius
sr and weight , and

the RBF in each RBFNN, and the calculation of the total output F(x) of the PP-RBFNN.

Sw

Fig. 3 presents the proposed parallel processing RBFNN system. Each one of the nodes of the

figure is a RBFNN (see Fig. 2). RBFNNs can be seen as a particular class of Artificial Neural
Networks (ANNs). The basic architecture of an RBFNN is a 3-layer network. The output of the net is
given by the following expression:

1
(, ,) ()

m

i i
i

F x w x wφ
=

Φ = ⋅∑r r (1)

where { : 1,..., }i i mφΦ = = are the basis functions set and wi the associate weights for every RBF. The
basis function φ can be calculated as a Gaussian function using the following expression:

(, ,) exp
x c

x c r
r

⎛ ⎞−
= ⎜ ⎟⎜ ⎟

⎝ ⎠
φ

r r
r r (2)

where is the central point of the function cr φ and r is its radius.

Fig. 1: Principal steps of the proposed algorithm

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2007|No. 3(14)

67

F(X)

…
.

x1

xm

… Σ

φ1

 φ2

 φm

w1

 w2

wm

 RBFN1

RBFN2

 Σ

RBFNS

f(x)

F1(x)

F2(x)

FS(x)

……… ………

1

1
1

1
d

x

x
M

2

2
1

2
d

x

x
M

1

s

s

s
d

x

x
M

Fig.2: Radial Basis
Function Neural

Network

Fig.3: parallel processing
structures PP-RBFN

Each subset of the input variables {x1,…,xd} (where d is the number of the dimensions of the
input data space) can be used as the inputs of each RBFNN. Every group of the input variables is used
as input of each RBFNN. These inputs are selected using our IVS procedure. Every RBFNN receives
variables and implements the process of optimization of the parameters of every RBFNN (centres Scr ,
radii sr). When the parameters of centres Scr and radii sr of each RBFNN have been optimized, a
method of linear optimization is used to find the values of the weight w, which depends on the total
output f(x) of the system PP-RBFNN, which minimizes the cost function calculated on the set of data
I/O.

The optimization of the weight does not depend on every output of every RBFNN {F1(x),…,FS
(x)}, but it depends on the total output of the PP-RBFNN system, and must be calculated in the linear
form as in the following expression:

()
1 1

(, ,)
smS

s s
i i

s i

f x w x wφ
= =

Φ = ⋅∑ ∑r r (3)

where
s

iφ are the i-th basis functions of the s-th RBFNN, and
s
iw is its weight.

Several PP-RBFNN structures can be obtained for any given problem from a set of input
variables. For example, for a 4-input problem {x1,…,x4}, many possible different architectures can be
obtained, the simplest when each input variable forms a single set (See Fig.4.a), and the most
complicated when all input variables are used in the only RBFNN (See Fig.4.d).

To gain an insight of how the PP-RBFNN configuration affects the number of actual parameters

of the system, let us recall that the total number of parameters in every RBFNN is equal to m (d 2)⋅ + ,
where m is the number of RBFs, and d is the number of input variables. Table 1 shows the number of
parameters used in each one of the architectures of Fig.4 using (for fair comparison) a total number of
24 RBFs for each one. We can see how even for this simple example with only 4 input variables to
share, the differences can be notable (the number of parameters can be doubled). The PP-RBFNN
structure is thus capable of decreasing the number of parameters to optimize, provided that the selected
structure is the most suitable one for the given set of I/O data.

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2007|No. 3(14)

68

f(x)
f(x)

Σ

F1(x)RBFN1 X1

RBFN2
X2

X4

RBFN3 X3

F3(x)

F2(x)

f(x)f(x)

F1(x)

 Σ

RBFN1
X1

X4

X2

X3
F2(x)

RBFN2

 Σ

F1(x) RBFN1 X1

RBFN2 X2

RBFN3 X3

RBFN4 X4
F4(x)

F3(x)

F2(x)

a b

c

X1

X2

X3

X4

Σ
F(x)

RBFN1

d
Fig.4. Different topologies of parallel processing PP-RBFNNs. a) 4 RBFNNs with one input variable
for each one b) 3 RBFNNs with one and two input variables for each one. c) 2 RBFNNs with two
input variables for each one. d) 1 RBFNNs with all the input variable set.

Fi
g

RBFN
N

RBF # in
each

RBFNN

Var # in
each

RBFNN

Parm #
in each
Sub-

RBFN

Parm #
in PP-
RBFN

6 1 18
6 1 18
6 1 18

2a 4

6 1 18

72

6 1 18
12 2 48 2b 3
6 1 18

84

12 2 48 2c 2
12 2 48

96

2d 1 24 4 144 144
Table 1. Number of parameters between different architectures PP-RBFNN.

In this paper we are concerned exclusively with the selection of the most suitable PP-RBFNN
structure. However, some remarks could be made about the optimization of the rest of the parameters
of the net, i.e. RBF centres, RBF radii and RBF weights. To optimize the centres of each RBF of each
RBFNN, it is common to use clustering algorithms such as the one presented in [13]. For the radii, we
used k-nearest neighbour technique [10]. Once the parameters of centres and radii of each RBFNN has
been initialized we can use a linear optimization method for optimizing the values of the weights that
minimize the least square errors.

3 Input Variable Selection for the PP-RBFNNs

An input variable selection method tries to reduce the dimension of the input variable space and
creates a new input variable set, thus identifying and removing as much irrelevant and redundant data
as possible, which reduces the dimensionality of the data and allows learning algorithms to operate
faster and more effectively.

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2007|No. 3(14)

69

The curse of the dimensionality [11] refers to the exponential approximation of the hyper-volume
as a function of dimensionality. RBFNN can be planned as interrelations of input space to output space,
it has to cover or represent each part of its input space in order to know how that part of the input space
should be mapped. Covering the input space take resources, and in the most general case, the amount
of resources needed is proportional to the hyper-volume of the input space. The exact formulation of
resources and part of the input space depends on the type of the network and should probably be based
on the concepts of information theory and differential geometry [11]. Input variable selection
fundamentally affects the severity of the problem, as well as the selection of the neural network model
[12].

Our method considers a simple calculation to select the input variables. The selection of the input
variables is done using the following steps:

1) Relate each possible input dimension of data {x ,…,x } with the dependent variable y (as a
function in one dimension) as:

1 d

(4){ }1 2 3 d,) , (,) , (,) , .. . , (,)(x y x y x y x y
2) Divide the data of each dimension into P parts as:

(){ }1 1, , ; 1,..., ; 1,...,j k j
i ii

P x P k n i d j p− ≤ < = = =
r

K (5)

where n is the number of data of I/O, ()k

i
xr is the component ith of the input vector kth.

3) Associate the data of each part P to corresponding output data as:
(6)(){ } ()1,k k j k j

i ii i
x y P x P− ≤ <
r r

4) Use the Kalman filter to smooth the vectors of the maximum and minimums in each part, and
calculate the distance j

iD between the maximum and the minimum values of the output in each
partition of the input variable x : i

(7)max() min() 1,....j k k
i j jD y y j p= − =

5) Finally, for each input variable x we calculate the mean of distancesi iD . The smallest iD the
most important input variable for the problem. Fig.5 presents, in a schematic way, the general

Relate each dimension of the input data {x1, …, xd} to the target output as a
function of dimension.

Divides the data in parts P.

Uses the Kalman filter to smooth the vectors of the maximum and minimums in
each part.

Associate the data of each dimension to his corresponding output data

Calculate the mean distance in each dimension.

D > θ ? No

Select the variable

Yes

Remove the variable

Calculate the value of distance D between the maximum and minimum values
of the target output in each part.

Fig.5: General description of the IVS method

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2007|No. 3(14)

70

description of the proposed IVS method. For all the parts the average of the distance is
calculated D .

4 Selection groups of input variables and the number of RBFNNs
This process depends on the function or the problem that we try to approximate. In general, every
function is represented by forms of summation and/or multiplication and/or division and/or subtraction
between its variables. The proposed PP-RBFNN structure tries to add linearly the output of every
RBFNN to have the total output of the PP-RBFNN system. For this, the variables that come multiplied
or divided and have not been eliminated by the calculation of the mean distance go together to one
RBFNN. Any variable multiplied or divided by other/s variables does not produce a big change in the
value of the variance of variable in the interval data, which we will always normalize in the interval
[0,1]. The variables that come added or subtracted to other variables and have not been eliminated by
the calculation of the mean distance go alone to one RBFNN. Any variable added or subtracted by
other variables produce clear change in the value of the variance. The variance of the distance is
calculated as:

1
()

()
1

p
i

var
j j

j
i

D D
x

p
=

−
=

−

∑
 (8)

The process of selecting which of the input variables must go alone or together to each RBFNN
depends on the value of the variance of the distance between the maximum value and the minimum
value in each partition. The variables that have a value of variance less than threshold variance will be
selected to go to RBFNN. The task of analyzing the data begins with each of selected variables related
to target output, and the variables with variance less than the proposed threshold value as variables that
must go alone in a RBFNN. The variables that have not been selected in the first phase are analyzed in
the next phases which take all possibilities of joining these variables, realizing every possible set of
two, three, four, etc

5 Parameters optimization of each RBFNN

In the proposed system we use a new supervised method of clustering for initializing the values
of the centres in every RBFNN. This algorithm incorporates the information regarding the target
output for every input vector of the set of training, and calculates the error provoked by each cluster in
the output of the function or the problem that we want to approximate using a RBFNN. The number of
clusters will increase in zones where the cluster provokes bigger error depending on the process of
migration of the clusters that have minor error to zones of clusters that have bigger error and a process
of local displacement that tries to allocate the data to the most nearby cluster

Scr

[13].
When the centres values of every RBFNN are determined, the following step is to fix the values

of the radius of every basis function to cover all data. For that purpose we use a heuristic algorithm
of k nearest neighbours (Knn) [10].

Sr

Once the values of the centres c and radius of the RBF have been optimized by means of the
previous methods, every RBFNN will be a linear model and the set of weight depends linearly on
the samples of the set of training. In the PP-RBFNN system, the weight w is optimized depending on
the total output. The calculation of the total output f(x) is the linear sum of all the output of each
RBFNN {F

Sr Sr
Sw

1(x), …, FS(x)}.

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2007|No. 3(14)

71

 C a lc u la t e th e v a r ia n c e V 1 o f t h e d is t a n c e in e v e r y p r a t e f o r e v e r y v a r ia b le

th a t th e y h a v e b e e n s e le c te d .

C a lc u la t e th e s iz e T o f t h e v a r ia b le s t h a t s t a y

A n a ly z e a l l t h e p o s s ib le s e t s o f t h e v a r ia b le s a n d c a l c u la t e th e v a r ia n c e V 2
f o r e v e r y s e t

N o

¿ V 1 < U m b 1 ?
S e le c t t h e
v a r ia b le t o
g o a lo n e t o
S u b - R B F N

y e s

¿ T < = 2 ?
y e s

T w o
v a r ia b le s g o
t o g e t h e r t o
S u b - R B F N

N o

¿ V 2 < U m b 2 ?
S e le c t t h e s e t s
o f tw o v a r ia b le s
to g o t o
S u b - R B F N

y e s

N o

C a lc u la t e th e s iz e T o f t h e v a r ia b le s t h a t s t a y

¿ T < = 3 ?
T h re e
v a r ia b le s g o
to g e th e r t o
S u b - R B F N

y e s

N o

A n a ly z e a l l t h e p o s s ib le s e t s o f t h e v a r ia b le s a n d t o c a lc u la t e th e v a r ia n c e
V 3 fo r e v e r y s e t

¿ V 3 < U m b 3 ?
S e le c t t h e s e t s
o f t h r e e
v a r ia b le s t o g o
to S u b - R B F N

y e s

N o

R e p e a t t h e p r o c e s s in 4 ,5 . . , d v a r ia b le s

F in is h

Fig.6: Process of selecting the variables that go alone or together to each RBFNN

The learning process is guided by the minimization of a function of error calculated as:

()2

1 1

1 (, ,)
2

d n
d d
n i i

j i

(9) Er f x w y
= =

= Φ −∑∑ r

where (, ,)d
if x wΦ
r is the total output f(x) of the system, and yi is the real output. The target of this phase

is to find the optimal weight to calculate the total output and the error of approximation. To calculate
the matrix of the weight s

mw the following expression is used:
s
mw G Y=

where G is the pseudo-inverse matrix of the activation matrix s
mϕ . This matrix can be calculated

by means of methods of resolution of linear equations. In this algorithm we use the singular values
decomposition (SVD) to solve this system of linear equations and assign the weight for each
RBFNN to calculate the output for each of them.

Sw

(10)

According to some methods the number of radial functions can be fixed priori or determined
incrementally or decrementally. In the proposed system we use the incremental method to determine
the number of RBF depending on the data test error that the system produces, which means, increase in
each iteration only 1 RBF in one of RBFNN until the there is no improvement in test error during
several iterations.

6 Simulation examples

In this section different examples are given to verify the procedure in the proposed algorithm.
Two types of results are presented:

• The structure of the system PP-RBFNN

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2007|No. 3(14)

72

• The results of the validity of the algorithm in approximate functions from samples of I/O data,
compared with results of a typical RBFNN that receives all the variables of the function and with other
methods proposed in the bibliography.
The results are obtained in 5 executions; {RBF} the set of radial functions used in each RBFNN.
#Param is the number of parameters. NRMSETr is the normalized mean squared error of the training
and NRMSETest is the normalized mean squared error of the test.

A. First Example f1(x)

Suppose we take an example with 6 possible input variables to choose from. Let us consider a set
of 20000 I/O data pairs randomly taken from the function.

2
1 2 3 4 5 6 1 2 3 4 5 610 () +20(-0.5) +10 +5 + 0 , , , , , [0,1]sen x x x x x x x x x x x xπ= ⋅ ∈1()f x

where each input variable is defined in the interval [0,1]. The proposed algorithm selects
the ideal architecture of the system for the function f1(x), depending on the value of the variance
threshold after analyzing every variable Fig.7.

 (11)

Fig.7. The variance for each variable
in f1(x)

In the function f1(x) few variables must go alone to RBFNN and the subset of the rest goes to other
RBFNN, as in Fig.8a.

(a)

(b)
Fig.8. (a) Structure PP-RBFNN selected by the

algorithm. (b) Structure of a classic RBFNN for the
current function

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2007|No. 3(14)

73

(a)

(b)
Fig. 9. Comparison of the result of PP-RBFNN

system and Classical RBFNN. (a) In the number of
parameters. (b) In the number of RBF.

PP-RBFNN algorithm

{ RBF }

Para
m

NRM
SETr

Std NRMS
ETest

Std

{2 1 1
1} 17 0.212 2E-

3 0.214 1E-
4

{1 2 1
1} 16 0.246 6E-

3 0.252 4E-
4

{1 1 2
1} 16 0.238 1E-

2 0.243 5E-
3

{1 1 1
2} 16 0.241 1E-

2 0.246 6E-
4

{3 1 1
1} 24 0.198 2E-

1 0.204 1E-
4

{2 2 1
1} 18 0.221 9E-

3 0.225 1E-
2

{2 1 2
1} 18 0.209 2E-

3 0.216 6E-
3

{2 1 1
2} 18 0.212 1E-

3 0.216 1E-
4

{4 1 1
1} 33 0.183 1E-

2 0.189 8E-
3

{3 2 1
1} 25 0.146 8E-

2 0.147 3E-
2

{3 1 2
1} 25 0.075 5E-

3 0.084 3E-
3

{3 1 1
2} 25 0.080 3E-

3 0.088 2E-
3

Classical RBFNN

RBF

Para
m

NRMS
ETr

NRMSETest

2 16 0.428 0.437

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2007|No. 3(14)

74

3 24 0.331 0.328
4 32 0.301 0.305
5 40 0.316 0.316
6 48 0.279 0.278
7 56 0.213 0.214
8 64 0.284 0.284
9 72 0.249 0.252
10 80 0.231 0.237
11 88 0.211 0.219
12 96 0.206 0.212
13 104 0.179 0.190
14 112 0.153 0.173
15 120 0.144 0.154

Table.2 NRMSE of training and test obtained by the proposed algorithm and by classic RBFNN for
the function f1(x)

A. Second Example f2(x)
In this example, the results obtained by the algorithm and other methodologies proposed in the
bibliography are compared using the function f2(x).

1(2 -1) 2
2 1 1

0.5)) 2
2 1 2

)=1.3356(1.5(1-) . (3 (-0.6)) +..

(4 (-0.9))), , [0,1]

xx e sen x

e sen x x x

π

π

⋅

⋅ ∈2(3(-

(
x

f x

They are compared with methods usually used to solve the problem of functional approximation, as
methods presented in [14, 15, 16, 17]. Table.4 presents the results obtained by these methods for the
function f2(x) and compared with other methods in [18, 19, 20]. In the function f2(x) each one of the
variables go alone to each RBFNN, as in Fig .10.

As seen from Table IV, the result of the PP-RBFNN outperforms other algorithms.

Algoritmo m Test
NRMSE

Para

m
MLP [16] 15 0.096 60
PP [14] - 0.128 -

CTM [16] - 0.170 -
MARS [15] - 0.063 -
ANN [17] 40 0.008 160

3 × 5
(TP) 0.278 23

4 × 6
(TP) 0.104 39

Pomares
2000

5 × 9
(TP) 0.041 72

5 0.3622 ±
0.0268 20 González

2001

10 0.1343 ±
0.0261 40

(12)

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2007|No. 3(14)

75

15 0.0459 ±
0.0096 60

21 0.0200 ±
0.0054 84

29 0.0143 ±
0.0045 116

5 0.3666 ±
0.0168 20

10 0.1108 ±
0.0135 40

15 0.0368 ±
0.0092 60

21 0.0191 ±
0.0036 84

Rivas 2003

29 0.0147 ±
0.0022 116

{1 4} 0.489 ±
0.0110 15

{1 5} 0.365 ±
0.0006 18

{1 6} 0.352 ±
0.0004 21

{2 7} 0.128 ±
0.0021 27

{3 7} 0.040 ±
0.0003 30

{3 8} 0.026 ±
0.0015 33

{4 8} 0.013 ±
0.0005 36

PP-RBFNN

{4 9} 0.007 ±
0.0022 39

Table.3 Comparative of different algorithms for the function f2(x)

Fig. 10. Obtained hierarchical PP-RBFNN structure for the example f2(x)

7 Conclusions
A fundamental limitation of the problem of approximation systems is that when the number of input
variables increases, the number of parameters usually increases in a very rapid way, even

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2007|No. 3(14)

76

exponentially. This phenomenon prevents the use of the majority of conventional modelling techniques
and forces us to look for more specific solutions. To deal with this problem, we proposed new
architecture for modelling complex systems in function approximation problems. This architecture is
composed of complete RBFNN that are in charge of a reduced set of input variables. Also we proposed
a new method to select the more important input variables, thus reducing the dimension of the input
variable space for each RBFNN. The selection of the hierarchical structure of PP-RBFNN adapted
according to the selected number of input variables and which of these variables go alone or together in
each RBFNN. We have also provided a method to find automatically the most suitable topology of the
proposed hierarchical structure and a method to select the more important input variables. We showed
that the results of PP-RBFNN outperform traditional methods in: number of parameters; number RBF
and the approximation error.

References

1. Vehtari, A., Lampinen, J.: Bayesian Input Variable Selection Using Posterior Probabilities and

Expected Utilities. Helsinki University of Technology, Laboratory of Computational Engineering
publications. Report B. ISSN 1457-1404, 2002.

2. Kwasny, S. C., Kalman. B. L., Chang, N.: Distributed Patterns as Hierarchical Structures, World
Congress on Neural Networks-Portland, OR. 1993.

3. Pomares, H., Rojas, I., González, J., Prieto, A.: Structure Identification in Complete Rule-Based
Fuzzy Systems. IEEE Trans. On fuzzy systems, vol. 10, No. 3, June 2002

4. Chen, Y., Wang, J. Z.: Kernel machines and additive fuzzy systems: classification and function
approximation. 789-795 vol.2. 2003

5. Bengio, S., Bengio, Y.: Taking on the curse of dimensionality in joint distributions using neural
networks. IEEE Trans. Neur. Net., special issue on data mining and knowledge discovery,
11(3):550-557, 2000.

6. Gonzalez, J., Rojas, H., Ortega, J., Prieto, A.: A new clustering technique for function
approximation. Neural Networks, IEEE Trans. on, Volume: 13 Issue: 1, Jan. 2002. Page(s): 132 -
142.

7. Fukumizu, K., Amari, S-I.: Local Minima and Plateaus in Hierarchical Structures of Multilayer
Perceptrons. Brain Science Institute. The Institute of Physical and Chemical Research (RIKEN)
October 22, 1999.

8. de Souza, F.J., Vellasco, M.M.R., Pacheco, M.A.C.: Hierarchical neuro-fuzzy quadtree models.
Fuzzy Sets and Systems 130 (2002) 189–205.

9. Ferrari, S., Maggioni, M., Borghese, N.A.: Multiscale approximation with hierarchical radial basis
functions networks. IEEE Trans. Neur. Net., vol.15, no.1, pp.178-188, 2004.

10. Moody J. and Darken C. Fast learning in networks of locally tuned units. Neural
Computations.1989. 1(2):281-294.

11. S.Bengio and Y.Bengio. “Taking on the Curse of Dimensionality in Joint Distributions Using
Neural Networks” IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 3, MAY
2000.

12. A.K. Jain and R .Chandrasekaran. “Dimensionality and sample size consideration in pattern
recognition practice”. In P.R. Krishaniah and L.N. Kanal, editors, Handbook of Statistics, volume
II, pages 835-855. North-Holland, Amsterdam, The Netherlands, 1982.

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2007|No. 3(14)

77

13. M.Awad, H.Pomares, F.Rojas, L.J. Herrera, J.González, A. Guillén. “Approximating I/O data
using Radial Basis Functions:A new clustering-based approach”. IWANN 2005, LNCS 3512, pp.
289-296, 2005.© Springer-Verlag Berlin Heidelberg 2005.

14. J.H. Friedman. and W. Stuetzle, "Projection pursuit regression", Journal of the American Statistics
Association, Vol. 76, No. 376, pp. 817-823, 1981.

15. J.H. Friedman, Multivariate Adaptive Regression Splines, Annals of Statistics, Vol 19, 1-141,
1991.

16. V. Cherkassky. and H. Lay-Najafy., "Constrained Topological Mapping for Nonparametric
Regression Analysis", Neural Networks, vol. 4, pp. 2740,1991.

17. V. Cherkassky, D. Gehring, and F. Mulier, Comparison of adaptive methods for function
estimation from samples, IEEE Trans. NN 7, 969-984,1996.

18. H.Pomares. “Nueva metodología para el diseño automático de sistemas difusos”. Tesis Doctoral,
universidad de granada, 2000.

19. J. Gonzalez. “Identificación y Optimización de redes de Funciones de Base Radiales Para
Aproximación funcional”. Tesis Doctoral, Universidad de Granada. 2001.

20. V.Rivas. “Optimización de Redes Neuronales de Funciones Base Radiales Mediante Algoritmos
Evolutivos”. Tesis Doctoral, universidad de Granada 2003.

Article received: 2007-05-18

