
Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2007|No. 3(14) 
  

89  

Hierarchical Clustering Based on K-Means as Local Sample (HCKM) 
 

       1Fahim A.M. 2Salem A. M. 3Torkey F. A. 4Ramadan M. A. 
 

1Faculty of Education, Suez  Canal University,  ahmmedfahim@yahoo.com 
2Faculty of Computers & Information, Ain Shams University, absalem@asunet.shams.edu.eg 

3Kafer El-Sheek University President, fatorkey@Yahoo.com 
4Faculty of Science, Minufiya University, mramadan@mailer.eun.eg 

 
Abstract 

Clustering is useful for discovering groups and identifying interesting distributions in 
the underlying data. Traditional clustering algorithms either favor clusters with spherical 
shapes and similar sizes, or are very fragile in the presence of outliers. We propose a 
clustering algorithm called HCKM, that is more robust to outliers and identifies clusters 
having spherical or non-spherical shapes and wide variances in size. HCKM achieves this 
by representing each cluster by a number of points that are the means of all smaller sub-
clusters forming it. Having more than one representative point per cluster allows HCKM to 
adjust well to the geometry of non-spherical shapes. Our experimental results confirm that 
the quality of clusters produced by HCKM is better than those found by existing algorithms; 
that is because the first phase -that creates sample- is an enhanced procedure for the k-
means algorithm, this enable us to remove the outliers . Furthermore, results demonstrate 
that sampling enable HCKM not only to outperform existing algorithms but also to scale 
well for large databases without sacrificing clustering quality. 

 
Key words: Hierarchical Clustering, Cluster analysis, Data analysis 

 
1 Introduction 
 

The wealth of information embedded in huge databases belonging to corporations (e.g., retail, 
financial, telecom) has spurred a tremendous interest in the areas of knowledge discovery and data 
mining. Clustering is a useful technique for discovering interesting data distributions and patterns in the 
underlying data. The problem of clustering can be defined as follows: given n data points in a d-
dimensional metric space, partition the data points into k clusters such that the data points within a 
cluster are more similar to each other than data points in different clusters. Existing clustering 
algorithms can be broadly classified into partitional and hierarchical [5]. Partitional clustering 
algorithms attempt to determine k partitions that optimize a certain criterion function. The square error 
criterion, defined below, is the most commonly used (mi is the mean of cluster Ci ). 

∑ ∑
= ∈

−
k

i cp
i

i

mp
1

2)(  

The square-error is a good measure of the within cluster variation across all the partitions. The 
objective is to find k partitions that minimize the square error. Thus, square error clustering tries to 
make the k clusters as compact and separated as possible, and works well when clusters are compact 
clouds that are rather well separated from one another. However, when there are large differences in the 
sizes or geometries of different clusters, as illustrated in Figure 1, the square error method could split 
large clusters to minimize the square error. In Figure 1, the square error is larger for the three separate 



Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2007|No. 3(14) 
  

90  

clusters in (a) than for the three clusters in (b) where the big cluster is split into three portions, one of 
which is merged with the two smaller clusters.  

 
 

 
 
 
 

                                        (a)               (b) 
 

Figure 1: Splitting of a large cluster by partitional algorithms 
 

A hierarchical clustering is a sequence of partitions in which each partition is nested into the next 
partition in the sequence. An agglomerative algorithm for hierarchical clustering starts with the disjoint 
set of clusters, which places each input data point in an individual cluster. Pair of items or clusters are 
then successively merged until the number of clusters reduces to k. At each step, the pair of clusters 
merged are the ones between which the distance is the minimum. The widely used measures for 
distance between clusters are as follows (mi is the mean for cluster Ci and ni is the number of points in 
Ci). 

2)(),( jijimean mmccd −=  

∑∑
∈ ∈

−=
i jcp cqji

jiave qp
nn

ccd 2)(1),(  

2

,max )(max),( qpccd
ji cqcpji −=

∈∈  

2

,min )(min),( qpccd
ji cqcpji −=

∈∈  

For example, with dmean as the distance measure, at each step, the pair of clusters whose centroids 
or means are the closest are merged. On the other hand, with dmin the pair of clusters merged are the 
ones containing the closest pair of points. All of the above distance measures have a minimum variance 
flavor and they usually yield the same results if the clusters are compact and well separated. However, 
if the clusters are close to one another (even by outliers), or if their shapes and sizes are not 
hyperspherical and uniform, the results of clustering can vary quite dramatically[3]. 

One of the earliest hierarchical clustering algorithm is the single link algorithm, that is based on 
dmin . The “chaining effect” is the main drawback of this algorithm; a few points located so as to form a 
bridge between the two clusters causes points across the clusters to be grouped into a single elongated 
cluster. This is illustrated in Figure 2, which shows two elongated clusters and string of few points 
(outliers work as bridge ) connect them   

 
 
 
 

Figure 2: The two elongated clusters that are connected by narrow string of points are merged 
into a single cluster. 

 



Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2007|No. 3(14) 
  

91  

The centroid-based approach (that uses dmean) and the all-points approach (based on dmin) do not  work 
well for non-spherical or arbitrary shaped clusters. A shortcoming of the centroid-based approach is 
that it considers only one point as representative of a cluster ( the cluster centroid ). For a large or 
arbitrary shaped cluster, the centroids of its subclusters can be far apart, thus causing the cluster to be 
split. The all-points approach, on the other hand, considers all the points within a cluster as 
representative of the cluster. This has its own drawbacks, since it makes the clustering algorithm 
extremely sensitive to outliers. When the number n of input data points is large, hierarchical clustering 
algorithms break down due to their non-linear time complexity (typically, O(n2)) and huge I/O costs[9].  

In order to overcome this problem, a clustering method named BIRCH is proposed in [13]. 
BIRCH first performs a pre-clustering phase in which dense regions of points are represented by 
compact summaries, and then a centroid-based hierarchical algorithm is used to cluster the set of 
summaries (which is much smaller than the original dataset). 

The pre-clustering phase employed by BIRCH to reduce input size is incremental and 
approximate. During pre-clustering, the entire database is scanned, and cluster summaries are stored in 
memory in a data structure called the CF-tree. For each successive data point, the CF-tree is traversed 
to find the closest cluster to it in the tree, and if the point is within a threshold distance of the closest 
cluster, it is absorbed into it. Otherwise, it starts its own cluster in the CF-tree. Once the clusters are 
generated, a final labeling phase is carried out in which using the centroids of clusters as seeds, each 
data point is assigned to the cluster with the closest seed. Using only the centroid of a cluster when 
redistributing the data in the final phase has problems when clusters do not have uniform sizes and 
shapes. 

An other clustering method named CURE is proposed in [3]. CURE employs a hierarchical 
clustering algorithm that adopts a middle ground between the centroid-based and the all-point. In 
CURE, a constant number c of well scattered points in a cluster are first chosen. The scattered points 
capture the shape and extent of the cluster. The chosen scattered points are next shrunk towards the 
centroid of the cluster by a fraction α . These scattered points after shrinking are used as representatives 
of the cluster. The clusters with the closest pair of representative points are the clusters that are merged 
at each step of CURE’s hierarchical clustering algorithm. The scattered points approach employed by 
CURE alleviates the shortcomings of both the all-points as well as the centroid-based approaches. But 
this algorithm is sensitive to all its input parameters, also the algorithm works on a sample not on the 
entire dataset. In addition to its inability to handle large dimensional dataset since it uses kd-tree. 

An other clustering method named CHAMELEON is proposed in [7]. CHAMELEON operates on 
a sparse graph in which nodes represent data points, and weighted edges represent similarities among 
the data points. CHAMELEON finds the clusters in the data set by using a two phase algorithm. During 
the first phase, CHAMELEON uses a graph partitioning algorithm to cluster the data points into a large 
number of relatively small sub-clusters. During the second phase, it uses an agglomerative hierarchical 
clustering algorithm to find the genuine clusters by repeatedly combining together these sub-clusters. 
This algorithm is very efficient for small data sets described with small number of attributes since it is 
based on a graph partitioning algorithm in the first phase. 

There are many other clustering algorithms classified as density based or grid based proposed in 
[2],[4],[12],[1]. 

The rest of this paper is organized as follows. The proposed algorithm is presented in section 2. 
We describe the datasets used to evaluate the algorithm in section 3,  also we describe the experimental 
results in this section and we conclude with section 4. 



Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2007|No. 3(14) 
  

92  

2 Hierarchical Clustering Based on K-Means (Overview) 
 

In this section we present HCKM, a clustering algorithm that overcomes the limitations of 
existing agglomerative hierarchical clustering algorithms discussed in the previous section. Figure 3 
provides an overview of the overall approach used by HCKM to find the clusters in a data set. 
 
 
 
 
 
 
 
 
 

 
Figure 3 : Overall view of HCKM algorithm 

Data set 

Remove outliers 

Merge partitions 

Partition data into 

Large number of 
small sub-clusters 

Final clusters 

 
HCKM operates on the representative of large number of small sub-clusters generated by a very 

fast clustering algorithm, the representative of each sub-cluster is its mean, the number of these sub-
clusters is very small compared with the total number of points in data set. The representatives of the 
data set allow HCKM to scale to large data sets. HCKM finds the clusters in the data set by using a two 
phase algorithm. During the first phase, HCKM uses a partitional clustering algorithm to cluster the 
data items into a large number of relatively small sub-clusters. During the second phase, it uses an 
agglomerative hierarchical clustering algorithm to find the genuine clusters by repeatedly combining 
together these sub-clusters. 
 
2.1 HCKM: A Two phase clustering algorithm 
 

HCKM uses an algorithm that consists of two distinct phases. The purpose of the first phase is to 
cluster the dataset into a large number of nonempty sub-clusters. The purpose of the second phase, is to 
discover the genuine clusters in the dataset by using the distance matrix to merge together these sub-
clusters in a hierarchical fashion. In the remainder of this section, we present the algorithms used for 
these two phases of HCKM. 
 
Phase 1: Finding Initial Sub-clusters 
 

 HCKM finds the initial sub-clusters using a very fast partitional clustering algorithm, the fastest 
partitional clustering algorithm is the k-means[8], this k-means is enhanced to be more faster and 
efficient especially when the dataset contains large number of clusters. The basic idea that makes k-
means more efficient, especially for data set that contains large number of clusters is to reduce number 
of distance computation. Since, in each iteration, k-means computes the distances between data point 
and all centers, this is computationally very expensive especially for huge datasets. Why we do not 
benefit from previous iteration of k-means algorithm?. For each data point, we can keep the distance to 
the nearest cluster. At next iteration, we compute the distance to the new center of the previous nearest 
cluster. If the new distance is less than or equal to the old center distance, the point stays in its cluster, 
and there is no need to compute its distances to the other cluster centers. This saves the time required to 
compute distances to k-1 centers. 

 



Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2007|No. 3(14) 
  

Cluster 1 

Cluster 3 

Cluster 2 

Cluster 1 

Cluster 3 
Cluster 2 

 
 
 
 
 
 
 
 
 
 

                        a) Initial centroids                             b) Recalculating the centroids                   c) Final positions of the centroids 
 

Figure 4: some points remain in their cluster because the center becomes more closer to them 
 
This idea comes from the fact that k-means algorithm discovers spherical shaped cluster. The 

center of cluster is the gravity center of points in that cluster, this center moves as new points added to 
or removed from it. This motion makes the center closer to some points and far apart from the other 
points, the points that become more closer to the center will stay in that cluster, so there is no need to 
find its distances to other cluster centers. The points that will be far apart from the center may change 
their cluster, so only for these points their distances to other centers will be calculated, and assigned to 
the nearest center. Figure 4  explains the idea.(Figure 4-a ) represents dataset and the initial 3 centroids. 
(Figure 4-b ) shows points distribution over the initial 3 centroids, and the new centroids for next 
iteration. (Figure 4-c ) shows the final clusters and their centroids. 

When we examine Figure 4-b, in clusters 1,2 we note  that, the majority of points become more 
closer to their new center, only one point in cluster 1, and 2 points in cluster 2 will be redistributed 
(their distances to all centroids must be computed), and the final clusters are presented in  Figure 4-c. 
Based on this idea, the enhanced k-means algorithm saves a lot of time.   

In the enhanced k-means method, we write two functions; the first function is the basic function 
of the k-means, that finds the nearest center for each data point, by computing the distances to the k 
centers, and for each data point keep its distance to the nearest center.  

The first function is shown in Figure 5, this function is called distance. In line 3 the function finds 
the distance between point number i and all k centroids. Line 5 searchs for the closest centroid to point 
number i, say the closest centroid is number j. Line 6 adds point number i to cluster number j, and 
increase the count of points in cluster j by one. Line 8 and 9 are used to enable us to execute the idea of 
the enhanced k-means; these two lines keep number of the closest cluster and the distance to it. Line 12 
perform centroids  recalculation.   

The other function is shown in Figure 6, it computes the distance between the current point and 
the new center of its previous cluster and compares this distance with its distance to the old center, it 
called distance_new. Line 1 finds the distance between the current point i and the new center of cluster 
assigned to it in previous iteration. If the computed distance is smaller than or equal to the distance to 
the old center, the point stays in its cluster that was assigned to in previous iteration, and there is no 
need to compute the distances to the other k-1 centers. Lines 3 to 5 will be executed if the computed 
distance is larger than the distance to the old center, the point may change its cluster, so line 4 
computes the distance between the current point and all k centers. Line 6 search for the closest center, 
line 7 assign the current point to the closest cluster and increase the count of points in this cluster by 
one, line 8 updates mean squared error. Lines 9 and 10 keep the cluster id for the current point assigned 
to it ,and its distance to it to be used in next call of that function (i.e. next iteration of that function). 
This information kept in line 9 and line 10 allow this function to reduce the distance calculation 
required to assign each point to the closest cluster, and this makes the function is faster than the 
function distance in Figure 5.The enhanced k-means based on these two functions described in Figures 

93  



Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2007|No. 3(14) 
  

94  

5 and 6. The first function (distance function in Figure 3) is executed two times, while the second 
function(distance_new function in Figure 4) is executed the reminder of iteration. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Function distance() 
//assign each point to its nearest cluster    
1     For i = 1 to n 
2        For j = 1 to k 
3         Compute squared Euclidean 
             distance d2(xi , mj) ; 
4       endfor 
5         Find the closest centroid mj to xi ; 
6         mj = mj + xi  ; nj = nj +1 ; 
7        MSE =  MSE + d2(xi , mj) ; 
8       Clusterid[i]=number of closest centroid 
9       Pointdis[i]= Euclidean distance to  
                            closest centroid 
10   endfor 
11 For j = 1 to k 
12   mj = mj/nj 
13 endfor 

            Figure 5: First function used in the 
              enhanced k-means algorithm  
 

 
 
 

This partitional clustering algorithm(enhanced k-means) produces k representatives for the 
dataset, if we consider the k representative as sample of the data, what is the sample size?. In 
CLARA[10] the sample size is 40+2k, where k is the required number of clusters. In the HCKM 
algorithm the sample size is k = 100+2k1; where k (the sample size) is the required number of sub-
clusters produced by the enhanced k-means, k1 is the input parameter to the HCKM algorithm, which 
means the required number of clusters. i.e. merge the nearest pair of k sub-clusters until k1 clusters 
remain. 

Function distance_new()
//assign each point to its nearest cluster    
1     For i = 1 to n 
             Compute squared Euclidean  

          distance d2(xi , Clusterid[i]) 
           If (d2(xi , Clusterid[i])<= Pointdis[i]) 
                Point stay in its cluster 
2       Else 
3    For j = 1 to k 
4      Compute squared Euclidean  

             distance d2(xi , mj) ; 
5   endfor 
6   Find the closest centroid mj to xi ; 
7    mj = mj + xi  ; nj = nj +1 ; 
8   MSE =  MSE + d2(xi , mj) ; 
9 Clustered[i]=number of closest centroid  
10 Pointdis[i]= Euclidean distance to 

       closest centroid 
11 endfor 
12 For j = 1 to k 
13 mj = mj/nj 
14     endfor 

Figure 6: Second function used the  
enhanced k-means algorithm 

The k representatives are the input to the second phase, since these k representatives are very 
small compared with the number of points in dataset, this makes the hierarchical clustering algorithm 
used in second phase is suitable to discover arbitrarily shaped clusters in huge datasets. Thus the 
proposed algorithm is not based on sample as CURE algorithm. Good quality clustering on sample not 
necessary produces good quality on all dataset, in addition to this problem of CURE algorithm, the 
proposed algorithm solves another problem that is CURE uses kd tree that is suitable for low 
dimensional dataset, and CURE use fixed number of representative for each cluster i.e. small and large 
cluster is the same, while the proposed algorithm consider number of representative depending on the 
size of each cluster (size of cluster is the number of sub-clusters constitute it). Also the proposed 
algorithm is more efficient than CHAMELEON algorithm, since the CHAMELEON algorithm uses a 
graph partitioning algorithm to cluster the data points into a large number of relatively small sub-
clusters. CHAMELEON needs to compute the internal interconnectivity and closeness of each sub-
cluster. Both of them can not be accurately calculated for sub-clusters containing only a few data 
points. 



Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2007|No. 3(14) 
  

95  

Phase II: Merging Sub-clusters using Single Link Algorithm 
 

As soon as the clustering solution produced by the partitioning-based algorithm of the first phase 
is found, HCKM then switches to an agglomerative hierarchical clustering that combines together these 
small sub-clusters. The key step of agglomerative hierarchical algorithm is that of finding the pair of 
sub-clusters that are the most similar. The single link method is used in phase II. 

In the single link method [5], each cluster is represented by the all data points in the cluster. The 
similarity between two clusters is measured by the similarity of the closest pair of data points belonging 
to different clusters. This method can find clusters of arbitrary shapes and different sizes. However, this 
method is highly susceptible to noise, outliers, and artifacts. 

The output of the first phase is k representative points, each point represents small sub-cluster, the 
sub-cluster contains less than three point considered outlier and removed from k representatives, by 
using this k representatives the proposed algorithm alleviates the problem of outliers, and makes the 
proposed algorithm able to handle huge datasets, also the second phase allow the proposed algorithm to 
discover clusters of different shapes, sizes. 

The single link (Slink) algorithm is an agglomerative hierarchical clustering algorithm[11], it is 
also called a nearest neighbor clustering algorithm [6]. This algorithm combines two sub-clusters into a 
single cluster by choosing the two remaining unconnected clusters that have the shortest distance as 
measured by the closest pair of points between the two clusters. The distance between two individual 
sub-clusters that have been merged is stored as internal nodes of the dendrogram. The leave nodes of 
the dendrogram represent all points in dataset. The dissimilarity between two points or clusters is 
frequently measured in terms of a distance between the points or clusters. Common distance metrics 
include the Euclidean distance metric and the “city block” distance metric. 

Once the dendrogram is generated, a level of dissimilarity is chosen. All sub trees that contain 
either a single point or dissimilarity measure(i.e. distance stored in the root of sub-tree) is less than the 
chosen level of dissimilarity become individual clusters. This level may be changed to increase or 
decrease the granularity of the clusters [6] . Given a set of n items to be clustered, and an n x n distance 
(or similarity) matrix, the basic process of hierarchical clustering is as follows:  

 
1. Start by assigning each item to its own cluster. Thus, if there is n items, this means that there 

will be n clusters, each containing just one item. Let the distances (similarities) between the 
clusters equal to the distances (similarities) between the items they contain.  

2. Find the closest (most similar) pair of clusters and merge them into a single cluster.  The 
number of clusters is decreased by one.  

3. Compute distances (similarities) between the new cluster and each of the old clusters.  
4. Repeat steps 2 and 3 until all items are clustered into a single cluster of size n. 

 
The details of single link algorithm is described in Figure 7. The input parameters to the 

algorithm are the data set s containing n points in d-dimensional space, starting with the individual 
points as individual clusters, at each step the closest pair of clusters is merged to form a new cluster, 
the distance between the new merged cluster and all other clusters is determined. The process is 
repeated until single cluster remains.  

Initially in Figure 7, the function single_link treats each input point as a separate cluster, thus 
steps from 1 to 6 compute the distances among all clusters, since the distance matrix is a similar matrix 
thus for loop in step 2 begins from i+1 instead of 1, steps 4,5 stores the distance dist(pi,pj) in two 
distinct place, steps from 8 to 16 search for the minimum distance and return with column index and 
row index in steps 14,15. Steps from 17 to 23 update the distance matrix , arrived to step 24 the number 
of clusters is decreased by one and the steps from 7 to 22 repeated until single cluster remains. 



Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2007|No. 3(14) 
  

96  

 
Function single_link(s)
{ 

1. for i := 1 to n-1 
2. for j:= i+1 to n 
3. { 
4. D(i,j) := dist(pi,pj) 
5. D(j,i) := D(i,j)  
6. } 
7. repeat 
8. min := large number 
9. for i := 1 to n-1 
10. for j:= i+1 to n 
11. if min > D(i,j) 
12. { 
13. min := D(i,j) 
14. row := i 
15. col := j 
16. } 
17. for i := 1 to n 
18. { 
19. if D(row,i) > D(col,i) 
20. D(row,i) := D(col,i) 
21. if D(i, row) > D(i, col) 
22. D(i,row) := D(i,col) 
23. } 
24. until single cluster remain  

} 

 

 

 

 

 

 

 

 

 

 

Figure 7: The Single Link Algorithm. 
 

In HCKM algorithm we use a simple one dimensional array of size k, this array stores the 
difference between internal nodes (L1,L2,…L5) in the dendrogram as shown in Figure 8, the dashed 
lines present the levels of dissimilarity, line1 produces four clusters, while line2 produces two clusters. 
These levels of dissimilarity appear where there is large variance between two internal nodes, the value 
of this variance is stored in the one dimensional array. 

Initially in the second phase of HCKM, each small sub-cluster is presented by its mean, the 
nearest pair of sub-clusters is merged. This process is repeated until single cluster remains. And the one 
dimensional array stores the difference between the internal nodes, the HCKM finds the maximum 
difference stored in the array. Experimentally, the value of the first difference (L2-L1) is the smallest 
one, when the algorithm find local maximum difference (line1 in figure 8) it produce a level of 
dissimilarity, the maximum difference is the global maximum difference (line2 in figure 8). 

 
 



Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2007|No. 3(14) 
  

97  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: The dendrogram generated by the  Single Link Algorithm. 
 

2.2 Performance Analysis 
 
The overall computational complexity of HCKM depends on the amount of time required to 

perform the two phases of the clustering. The amount of time required by HCKM two-phase clustering 
algorithm depends on the number k of initial sub-clusters produced by the enhanced k-means 
partitioning algorithm used in the first phase. The amount of time required by the first Phase depends 
on the amount of time required by the enhanced k-means, In the enhanced k-means, to obtain initial 
clusters, this process requires O(nk). Here, some points remain in its cluster, the others move to 
another cluster. If the point stays in its cluster this requires O(1), otherwise requires O(k). If we 
suppose that half points move from their clusters, this requires O(1/2*nk), since the algorithm 
converges to local minimum, the number of points moved from their clusters decrease, in each 

iteration. So we expect the total cost to be ∑
=

l

i
ink

1

1 . Even for large number of iteration, ∑
=

l

i
lnk

1

1  is much 

less than nkl . So the cost of enhanced k-means approximately is O(nk) not O(nkl), where  n is the 
number of data points, k is the number of initial sub-clusters and l is the number of iteration. The 
amount of time required by the second phase depends on the amount of time needed to compute the 
dissimilarity matrix and updating this matrix at each merge step, that is O(k2). Thus, the overall 
complexity of HCKM’s two-phase clustering algorithm is O (n k + k2). 
 
3. Experimental Results 

 
In this section, we present experimental evaluation of HCKM on several different real and 

synthetic datasets. We compared our results with that of  single link algorithm in terms of the total 
execution time and quality of clusters. Our experimental results are reported on PC 800MHZ, 128 MB 
RAM, 256 KB cache. 
 
3.1 Real Data Sets 
 
We experimented with different data sets, we give a brief description of  the datasets used in our 
algorithm evaluation. The following Table1 shows some characteristics of  the datasets. The real data 
used in the experiments were taken from http://www.ics.uci.edu/mlear/mlrepository.html (letters 
dataset), http://www.cs.utoronto.ca/~delve/data/datasets.html (abalone dataset) and 

L5-L4 

L4-L3 

L3-L2 

L2-L1 

L5

L4
L3

Level of dissimilarity (line2) 

Level of dissimilarity (line1) 

Array stores variance 
between internal nodes 

L2
L1

S1 S2 S3 S4 S5 S6



Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2007|No. 3(14) 
  

98  

http://lib.stat.cmu.edu/datasets/ (wind dataset).  
 
 

Table 1: Characteristic of the datasets 
 

Datasets Number 
of  records 

Number of 
attributes 

letters 20000 16 
abalone 4177 7 
wind 6574 15 

 
a). Letter Image Dataset  

This data set represents the image of English capital letters. The image consists of a large number 
of black-and-white rectangular pixel displays as one of the 26 capital letters in the English alphabet.  
The character images were based on 20 different fonts and each letter within these 20 fonts was 
randomly distorted to produce a file of  20,000 unique stimuli.  Each stimulus was converted into 16 
primitive numerical attributes (statistical moments and edge counts) which were then scaled to fit into a 
range of integer values from 0 through 15.    
 
b). Abalone Dataset 

This data set represents physical measurements of abalone (sea organism). Each abalone 
described with 8 Attributes. 
 
c). Wind Dataset 

This data set represents measurements about wind from 1/1/1961 to 31/12/1978. These 
observations of wind described by 15 Attributes. 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 9: Random Sample(synthetic dataset) 
3.2 Synthetic Datasets 

our generated dataset contains clusters of smi-spherical shaped, contains 100000 points in two 
dimension. This data generated randomly using visual basic code. Figure 9 shows a sample of it.   
 
3.3 Qualitative Comparison 

 
To cluster a data set using HCKM, we need to specify the value of k1, that presents the required 

number of cluster, also the proposed algorithm produces levels of dissimilarity on the dendrogram (tree 
shows which pair of clusters merged at each step)to stop clustering process. The following table shows 
the execution time for each data set. 

 



Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2007|No. 3(14) 
  

99  

Table 2: execution time and levels of dissimilarity for each dataset 
 

HCKM Single 
link 

Datasets Time 
(sec.) clusters step Time 

(sec.) 
125 0.066 
47 0.084 
20 0.107 
17 0.112 
15 0.377 

Letters 84 

2 1.438 

Very 
large 
time 

8 0.012 
7 0.039 
4 0.056 Abalone 3 

2 0.140 

976 

138 0.259 
14 0.304 
4 0.340 
3 1.063 

Wind 17 

2 1.549 

Very 
large 
time 

Synthetic 
24 100 0.468 

Very 
large 
time 

 
When we apply the single link algorithm on the abalone dataset (the smallest dataset) the 

algorithm takes 967 seconds. This is reveals that the proposed algorithm is very efficient to handle 
huge dataset in reasonable amount of time. Because the first phase is the main of our algorithm, and it 
is also a clustering algorithm, so its result represent the centers of gravity for the distribution of the 
data. We consider the result of this phase as sample of the whole data. So we introduce some results 
show the quality of the sample produced by the first phase in the following Figure 10 
 
 
 
 
 
 
 
 
 
 
 
 
 
                 
                                       

0

10

20

30

40

50

60

0 100 200 300 400 500 600 700 800
number of clusters required

tim
e 

in
 S

ec

Original k-means

enhanced k-means

0

10

20

30
40

50

60

70

0 20 40 60 80 100 120 140 160

number of clusters required

tim
e 

in
 s

ec

Original k-means

enhanced k-means

Execution time(Abalone Dataset ) Execution time (Wind Dataset)

 
 



Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2007|No. 3(14) 
  

100  

 
 
 
 
 
 
 
 
 
 
 

 
 

                                       

Quality of clusters (Abalone Dataset)  Execution time(Letter Image Dataset) 

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160

40 50 60 70 80 90 100

original k -means

enhanced k -means
tim

e 
in

 s
ec

0

5

10

15

20

25

0 100 200 300 400 500 600 700 800
number of cluster required

M
SE

Original k-means

enhanced k-means

required number of clusters

 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

Quality of clusters (Letter Image Dataset) Quality of clusters (Wind Dataset) 

200

250

300

350

400

450

40 50 60 70 80 90 100

original k-means

enhanced k-means

M
SE

required number of clusters
0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140 160

number of clusters required

M
S

E

Original k-means

enhanced k-means

Figure 10: the execution time and the quality of the first phase. 
 
In the second phase we use the single link algorithm with the execution time of O(k2), where k is 

the number of the sub-clusters generated from the first phase. And the sub-cluster containing a few 
number of points is removed; by this step we overcome the chain effect problem of the single link 
algorithm. So the quality of the proposed algorithm is the better. 
 
4. Conclusion 
 

In this paper, we presented a simple idea to enhance the efficiency of single link clustering 
algorithm. Our experimental results demonstrate that our scheme can improve the execution time of the 
single link algorithm, with no miss of clustering quality in most cases. From our result we conclude 
that, the enhanced k-means used in the first phase is responsible for the efficiency of final clusters. The 
proposed algorithm doesn’t depend on random sample, also the first phase allows us to remove outliers.   
 



Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2007|No. 3(14) 
  

101  

References 
 
1. Agrawal R., Gehrke J., Gunopulos D., Raghavan P.: “Automatic Subspace Clustering of High 

Dimensional Data for Data Mining Applications”, Proc. ACM SIGMOD’98 Int. Conf. on 
Management of Data, Seattle, WA, 1998, pp. 94-105. 

2. Ester M., Kriegel H.-P., Sander J., Xu X.: “A Density-Based Algorithm for Discovering Clusters in 
Large Spatial Databases with Noise”, Proc. 2nd Int. Conf. on Knowledge Discovery and Data 
Mining, Portland, OR, AAAI Press, 1996, pp. 226-231. 

3. Guha S., Rastogi R., Shim K.: ”CURE: An Efficient Clustering Algorithms for Large Databases”, Proc. 
ACM SIGMOD Int. Conf. on Management of Data, Seattle, WA, 1998, pp. 73-84. 

4. Hinneburg A., Keim D.: “An Efficient Approach to Clustering in Large Multimedia Databases 
with Noise”, Proc. 4th Int. Conf. on Knowledge Discovery & Data Mining, New York City, NY, 
1998. 

5. Jain A. K., Dubes R. C.: “Algorithms for Clustering Data,” Prentice Hall, Englewood Cliffs, New 
Jersey, 1988. 

6. Johnson E. L. and Kargupta H., “Collective, Hierarchical Clustering from Distributed, Heterogeneous Data, 
” School of Electrical Engineering and computer science, Washington state university 

7. Karypis G., Han E. and Kumar V., “CHAMELEON, A Hierarchical Clustering Algorithm Using Dynamic 
Modeling, ” Computers vol.32 , pp. 68-75, 1999.   

8. MacQueen J., “Some Methods For Classification And Analysis Of Multivariate Observations, ” proc. 5th 
berkely symp. Math. Statist, prob., 1, pp. 281-297, 1967. 

9. Nanni M., “Speeding-Up Hierarchical Agglomerative Clustering in Presence of Expensive Metrics”, 
PAKDD , LNAI 3518, pp. 378–387, 2005. 

10. Ng R. T., Han J.: “Efficient and Effective Clustering Methods for Spatial Data Mining”, Proc. 20th Int. 
Conf. On Very Large Data Bases, Santiago, Chile, Morgan Kaufmann Publishers, San Francisco, CA, 
1994, pp. 144-155. 

11. Sibson R., “SLINK, An Optimally Efficient Algorithm For The Single Link Cluster Method, ” Computer 
Journal, vol. 16, pp. 30-34, 1973. 

12. Sheikholeslami G., Chatterjee S., Zhang A.: “WaveCluster:A Multi-Resolution Clustering 
Approach for Very Large Spatial Databases”, Proc. 24th Int. Conf. on Very Large Data Bases, 
New York, NY, 1998, pp. 428 - 439. 

13. Zhang T., Ramakrishnan R., Linvy M.: “BIRCH: An Efficient Data Clustering Method for Very Large 
Databases”. Proc. ACM SIGMOD Int. Conf. on Management of Data, ACM Press, New York, 1996, 
pp.103-114. 

 
 

Article received: 2007-05-24 


	 
	3. Experimental Results 
	 
	3.2 Synthetic Datasets 
	In this paper, we presented a simple idea to enhance the efficiency of single link clustering algorithm. Our experimental results demonstrate that our scheme can improve the execution time of the single link algorithm, with no miss of clustering quality in most cases. From our result we conclude that, the enhanced k-means used in the first phase is responsible for the efficiency of final clusters. The proposed algorithm doesn’t depend on random sample, also the first phase allows us to remove outliers.   
	 References 




