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Abstract: 
In this paper, we study a certain class of resilient functions with highest possible 

algebraic immunity or with a reasonably high algebraic immunity which achieves 
nonlinearity better than that obtained by M. Lobanov, if the non linearity of initial 
functions achieves Sarkar et al’s bound.  
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I. Introduction 
Boolean functions, when used in stream cipher, are required to have good cryptographic 

properties. Some of the important properties are balance, high algebraic degree, correlation 
immunity of reasonably high order and high non linearity; these properties ensure that the functions 
are resistant against correlation attacks [1] and linear cryptanalysis [2]. Many papers studied these 
properties. Unfortunately, they showed that certain properties all cannot be obtained simultaneously 
and the compromises must be found. The nonlinearity of a Boolean function does not exceed 

1
21 22

−− −
n

n [3]. A function achieving this nonlinearity can not be balanced. Siegenthaler showed in 
[4] that any n-variable t -th order correlation immune function ( nt ≤≤0 ) has algebraic degree 
smaller than or equal to tn − , and that any n-variable t -resilient function ( nt ≤≤0 ) has algebraic 
degree smaller than or equal to 1−− tn if 2−≤ nt  and equal to 1 if 1−= nt . 
 

Sarkar and Maitra demonstrated in [5] a divisibility bound on the Walsh transform values of 
an n-variable, t -th order correlation immune (resp. t -resilient) function, with 2−≤ nt : these values 
are divisible by 12 +t  (resp. by 22 +t  ). This provided a nontrivial upper bound on the nonlinearity of 
resilient functions (and also of correlation immune functions, but non-balanced functions present 
less cryptographic interest), independently obtained by Tarannikov [6] and by Zheng and Zhang [7]: 
the nonlinearity of any n-variable, t -resilient function is upper bounded by 11 22 +− − tn . Tarannikov 
proved that resilient functions achieving this bound must have degree 1−− tn  (that is, achieve 
Siegenthaler’s bound); thus, they achieve best possible trade-offs between resiliency order, degree 
and nonlinearity. 
 

Theses criteria were until recently the only requirements needed for the design of the Boolean 
functions used in a stream cipher systems as a combining functions or as a filtering one. The recent 
algebraic attacks [8], [9], [10], [11], [12], [13], [14] have complicated this situation by adding the 
new criterion of algebraic immunity, of considerable importance to this list. Today, it is known that 
to resist the attacks of the type algebraic attacks, and the selected Boolean functions must have a 
degree of algebraic immunity greater than seven. Unfortunately these criteria are generally 
incompatible what obliges the cryptograph to seek compromises. It is the reason for which research 
on the Boolean functions is very active and especially capital. The stake to seek compromises 
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between these criteria is essential to make it possible to better apprehend the safety of the cipher 
systems which use the Boolean functions as cryptographic primitives. 
 

Nonlinearity is the most important criterion among those cryptographic criteria on Boolean 
functions used in cipher systems (stream ciphers, bloc ciphers). In [15], Lobanàov has improved a 
lower bound (between nonlinearity and algebraic immunity) obtained in [16] on the (first-order) 
nonlinearity of Boolean functions f a n -variables with given algebraic immunity [15], which 
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Nf , he proved that this lower bound cannot be improved further. 

Lobanov’s result has been extended to the r th-order nonlinearity rNf  of an n -variable Boolean 
function f  in two different lower bounds [17], [18]. The result of [15] gives a new reason why one 
should not use functions f  with low nonlinearity, since in that case )( fAIn  would be low. 
However, they do not assure that if f has high algebraic immunity (for instance an optimum 
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)( nfAIn ) then its nonlinearity will be high. Indeed, the result of [15] implies then that 
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In this paper, we give a construction method which can get a large class of Boolean functions 

with an important nonlinearity and algebraic immunity. It shows that we can construct reslient 
functions with a reasonably high algebraic immunity having non linearity better than that obtained 
by Lobanov in [15], when the non linearity of initial functions achieve Sarkar et al’s bound. This 
construction does not increase the number of variables, contrary to the known general secondary 
constructions.  

The paper is organized as follows. First, we will give some preliminaries of the paper. In 
section 3, we give a construction to get a large numerous Boolean functions with an important non 
linearity and algebraic immunity. In section 4 we study resilient functions with algebraic immunity 
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⎦ ⎥ , achieves nonlinearity better than that obtained by M. Lobanov. 

 
 II. Preliminaries 

A Boolean function on n variables may be viewed as a mapping from nF2 in to 2F . The set of 
all n -variable Boolean function is denoted by nB . By ⊕  we denote sum modulo 2. The Hamming 
weight )( fwt  of a Boolean function f  on nF2 is the size of its support{ }1)(;2 =∈ xfFx n . The 
Hamming distance ),( gfd between two Boolean functions f  and g is the Hamming weight of 
their difference gf ⊕ , )(),( gfwtgfd ⊕= .An n -variable Boolean function f has unique 

algebraic normal form (A.N.F): ++= ∑
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The algebraic degree of Boolean function f , denoted by )( fd° , is defined as the number of 
variables in the longest term of f . If algebraic degree of f is smaller than or equal to one then f is 
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called affine function. An affine function with a constant term equal to zero is called a linear 
function. Many properties of Boolean functions can be described by the Walsh-Hadamard 
transform. Let f be Boolean function on nF2 . Then the Walsh-Hadamard transform of f is defined 
as: 
 
                                               ∑

∈

−−=∈∀
nFx

xuxfn uWfFu
2

.)(
2 )1()1()(, .                                          (1) 

Where xu. denoted the usual scalar product of vectors u and x . 
The nonlinearity Nf of an n variables function f is the minimum distance from the set of all 
n variables affine function, it equal to: 
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Boolean functions used in cipher system must have high nonlinearity to prevent correlation and 
linear attacks [19], [20], [21], [1]. A Boolean function f on nF2 is balanced if )1()( ⊕= fwtfwt . 
Otherwise, f  is balanced if and only if 12)( −= nfwt . Correlation immune functions and resilient 
functions are two important classes of Boolean functions. Xiao and Massey [22] provided a spectral 
characterization of correlation immune and k -th resilient functions. A function f  is k -th order 
correlation immune if and only if its Walsh transform f satisfies: 0)( =uWf , for kuwt ≤≤ )(1 , 
where wt(u) denotes the Hamming weight of u, and f is k -th resilient if 
moreover 0)0( =Wf . ,2

nFu ∈∀   kuwt ≤≤ )(0 .  
 
The algebraic immunity of a Boolean function f is the smaller degree of non null function g such 
that 0* =gf or 0*)1( =+ gf . Otherwise, the minimum value of d  such that f or 1+f admits an 
annihilator of degree d . We denoted by )( fAI  the algebraic immunity of a Boolean function f . It 
is shown in [13] and [23] that algebraic immunity of a Boolean function f is at most [ ]2

n . By 
)( fAN   we mean the set of annihilators of f . 

 
 
III. Construction of Booleans functions 
The idea of our construction comes from the following. 

Construction 1: Let k,nbe any two positive integers such that
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Booleans functions of nB with the following conditions. 
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Then we have the following important result. 

Lemma 1 Let f ∈ Bn  be a function as described in Construction 1. Then IAn ( f ) ≥ k . 
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Proof: We will show that the functions f and f⊕1 have not a nonzero annihilator of degree 
less than k . 
Writ the possible annihilator hof the functions f and f⊕1 of degree at most k −1by means of 
indeterminate coefficients: 

  

h = a0 + aixi

i= 0

n

∑ + aij xix j

1≤ ip j≤n

∑ + ...+ ai1 ...ik−1
xi1

...xik−1

1≤ i1 ≤...≤ ik−1 ≤n

∑ . 

1. The function h  is the annihilator of f if only if f (x) =1follows h(x) = 0 .we obtain the 
system of homogeneous linear equations on the coefficients of the function h : h(x) = 0 . 
For all vectors x of Hamming weight greater than kn − .  
Since h(x) = 0 , we obtain that all coefficients of hare zeros, hence, h ≡ 0 .  

2. The function h  is the annihilator of f⊕1  if only if 1)(1 =⊕ xf follows h(x) = 0 . We 
obtain the system of homogeneous linear equations on the coefficients of the function h : h(x) = 0 . 
For all vectors x of Hamming weight less than or equals k −1.  
Since h(0,...,0) = 0, we have a0 = 0 . Since h(x) = 0 if 1)( =xwt , we have ai = a0 = 0 . Applying the 
induction on the weight of vectors we obtain that all coefficients of hare zeros, hence, h ≡ 0 . 
Hence, according to item 1 and item 2, we have IAn ( f ) ≥ k . 
 

Lemma 2 Let f ∈ Bn  be a function as described in Construction 1. Then 
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Proof: Let hbe a Boolean function of degree k −1. Let the ANF of 
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f if only if f (x) =1follows h(x) = 0 . Then in order to provide kfIAn f)( , it is necessary that 
obtained homogeneous system of linear equations on coefficients ,..., 10 aa has the only zero solution. 
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Lemma 3 Let f ∈ Bn  be a function as described in Construction 1. Then the value of the 

Walsh transform of f  at every u ∈ F2
nequals: 

                                                          )()( uWguWf =                                                                    (4) 
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Where )(0 uδ  is Dirac function at zero. 
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IV. Construction of resilient functions 
 

We use now the result of Lemma 3 to build resilient functions with reasonably high algebraic 
immunity and high nonlinearities.  
 

Theorem 1: Let f ∈ Bn  be a function as explained in Construction 1. Then, if g is t -th order 
correlation immune (res. t -resilient). Then, the function f is t -th order correlation immune (res. 
t -resilient). Moreover: 
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n
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Proof: Relation (4) and the fact that for every non zero vector nFu 2∈ of Hamming weight at 

most t , we have the value )(uWg equal to zero. This implies that 0)( =uWf . Thus, f is t -th order 
correlation immune. Same property occurs for 0=u in the case g is t -resilient. 
 
The relation (4) implies )(max)(max

22
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= , that is, using relation (2), we 
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Remark 1: The family of functions described by construction 1 is very general. It is easy to 

see that construction 1 makes possible to define more numerous Boolean functions and resilient 
functions with an important non linearity and algebraic immunity. Thus, this construction permits to 

design a large class of resilient functions with algebraic immunity 
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high algebraic immunity having non linearity better than that obtained by Lobanov [15], when the 
non linearity of initial functions achieve Sarkar et al’s bound. 
In the following corollary 1, we will show that the nonlinearity of function nBf ∈  as described in 
construction 1 can achieve the best possible nonlinearity ( Sarkar et al’s bound), better than 
obtained by Lobanov[15]. 
 

Corollary 1 Let nBf ∈  be t -resilient function as described in construction 1. If g is t -
resilient achieve nonlinearity 11 22 +− − tn . Then f is t -resilient function achieve 
nonlinearity 11 22 +− − tn . 
 
Note that in [15] it was constructed the balanced function f of n -variables with the maximum 
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n if n is even. Our corollary 1 proved that it is possible to design 

balanced function with algebraic immunity
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In the following theorem, we will use the observation of lemma 3 for construction bent functions. 

Recall that any n -variables bent function f ( n even), admit a dual 
~
f defined as: for every 

vector nFu 2∈ , we have )(2
~

)1(2)( uf
n

uWf −= .  
   

Theorem 2: Let k,nbe any two positive integers such that
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