
Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2008|No.1(15)

37

K-Means and Spherical Clusters with Large Variance in Sizes

1 Fahim A.M. 2 Saake G. 3 Salem A. M. 4Torkey F. A. 5Ramadan M. A.

1Faculty of Education, Suez Canal University, ahmmedfahim@yahoo.com

2Faculty of information, Otto-von-Guericke-University Magdeburg, saake@iti.cs.uni-magdeburg.de
3Faculty of Computers & Information, Ain Shams University, absalem@asunet.shams.edu.eg

4Faculty of Computers & Information, Minufiya University, fatorkey@Yahoo.com
5Faculty of Science, Minufiya University, mramadan@mailer.eun.eg

Abstract
Data clustering is an important data exploration technique with many applications in
data mining. The k-means algorithm is well known for its efficiency in clustering large
data sets. However, this algorithm is suitable for spherical shaped clusters of similar
sizes. The quality of the resulting clusters decreases when the data set contains spherical
shaped clusters with large variance in sizes. In this paper, we introduce a simple idea to
overcome this problem. Our experimental results reveal that our proposed algorithm
produces satisfactory results.

Keywords: K-Means, Data Clustering, Cluster Analysis.

1. Introduction
Clustering is a popular approach to implement the partitioning operation. Clustering can be

defined as the process of organizing objects in a database into clusters (groups) such that objects
within the same cluster have a high similarity, while objects belonging to different clusters have a
high dissimilarity [1], [5] and [6]. K-means clustering is one of the most popular data clustering
methods because of its simplicity and computational efficiency.

Although the K-means method has a number of advantages over other data clustering
techniques, it also has drawbacks; it often converges at a local optimum. The final result depends on
the initial starting centroids. Many researchers introduce some methods to select good initial
starting centroids [2]. Other researchers try to find the best value for the parameter k that determines
the number of clusters. The value of k must be supplied by the user [8]. In recent years many
improvements have been proposed and implemented in the K-means method [3].

Existing clustering algorithms can be broadly classified into partitional and hierarchical ones
[5]. Partitional clustering algorithms attempt to determine k partitions that optimize a certain
criterion function. The square-error criterion, defined in (1), is the most commonly used (mi is the
mean of cluster Ci)

2

1
∑ ∑
= ∈

−=
k

i cp
i

i

mpE (1)

The square-error is a good measure of the within-cluster variation across all the partitions. The
objective is to find k partitions that minimize the square-error. Thus, square error clustering tries to
make the k clusters as compact and separated as possible, and works well when clusters are
compact clouds rather well separated from one another[4]. However, when there are large
differences in the sizes or geometries of different clusters, as illustrated in Figure 1, the square-error
method could split large clusters to minimize the square-error. In this figure the square-error is
larger for the three separate clusters in (a) than for the three clusters in (b), where the big cluster is
split into three portions, one of which is merged with the two smaller clusters. The reduction in

http://www.uni-magdeburg.de/

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2008|No.1(15)

38

square-error for (b) is due to the fact that the slight reduction in square error due to splitting the
large cluster is weighted by many data points in the large cluster. We propose a simple idea to solve
this problem.

There is a very large number of clustering algorithms but we focus on the k-means algorithm
proposed in this paper. A simple function is added to the K-means algorithm making it able to
discover clusters with large variance in size with small separation between clusters. So we review
the k-means in section 2, discuss our idea in section 3, present some experimental results in section
4 and conclude with section 5.

(a) (b)
Figure 1: Splitting a large cluster by k-means algorithm

2. k-Means Clustering
The general algorithm introduced in [7] is referred to as k-means. Since then it has become

widely popular and is classified as a partitional or non-hierarchical clustering method [5]. It is
defined as follows: given a dataset D = {x1, . . . , xn} of n numerical data points, a natural number k
< n, and a distance measure d which is L2 distance (Euclidean distance). The k-means algorithm
aims at finding a partition C of D into k non-empty disjoint clusters C1, . . . ,Ck with C1∩C2=φ and

such that the overall sum of the squared distances between data points and their cluster
centers is minimized. This algorithm works as follows:

DCk

i i ==U 1

MSE=largenumber
Select initial cluster centroids {mj}j

k=1
Do

OldMSE=MSE;
MSE1=0;
For j=1 to k

mj=0; nj=0;
endfor
For i=1 to n

For j=1 to k
Compute squared Euclidean
distance d2(xi, mj);

endfor
Find the closest centroid mj to xi;
mj=mj+xi; nj=nj+1;
MSE1=MSE1+d2(xi, mj);

endfor
For j=1 to k

nj=max(nj, 1); mj=mj/nj;
endfor
MSE=MSE1;

while (MSE<OldMSE)

Figure 2: k-means algorithm

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2008|No.1(15)

39

It randomly selects k points (centroids) from the dataset as initial solution for the clustering
problem, and assigns each point to the nearest centroid according to the distance measure. After
distributing points over the centroids, the algorithm locates the new position of the centroids by
taking the average mean of points in each cluster. Then the algorithm goes to the next iteration until
there is no change at the centroids or maximum number of iteration is performed. Figure 2 shows
the k-means algorithm.

3. Refinement the Final Clusters
The k-means algorithm is a popular clustering algorithm and has its application in data

mining, image segmentation [8], bioinformatics and many other fields. This algorithm has many
advantages (simplicity, speed convergence to final means, scalable and easily implemented). Its
disadvantages are the following: the final means depend on the initial starting means, is sensitive to
outliers, requires the number of clusters (the value of k) in advance and it works well with spherical
shaped cluster of similar size. In this section we present how to make this algorithm work well with
spherical shaped cluster of any size. According to our proposed method, first we find the distances
between the means as a result from the k-means algorithm. For each cluster we calculate its average
radius by dividing the sum of squared error of its points from its representative by the number of
points assigned to it. We search for the largest cluster (having the largest average radius) and test
whether this cluster has some portion merged with other clusters. At the first time you can say if the
summation of the two radiuses is larger than the distance between the two clusters. Then there is a
portion of the larger cluster merged with the other cluster. So we can redistribute the points in the
smaller cluster only over the two clusters. But this formula is not suitable at all. Since the mean of
cluster is the center of gravity of the points. So for the large cluster in figure 1 the average radius is
larger than the actual radius. On the other hand, the average radius of a smaller cluster is larger than
the actual radius. Why does it happen? This occurs because the means of the smaller cluster is
attracted toward the large cluster, since the objective of the k-means is to get the smallest value for
the squared error function in equation 1. So, we use the following formula to test the partition of the
large cluster. Where ml and ms are the means of the large and the small cluster respectively, d is the
dimensionality of the data, L and S refer to the large and small cluster respectively.

Means_distance = ∑
=

−
d

i
ii msml

1

2)((2)

Sum_of_radius = (radius(L) + radius(S))*0.80 (3)

If the sum_of_radii is larger than or equal to the means_distance and at the same time the ratio
between the two radii is smaller than 0.90, this condition is used to insure that there is large
difference in size, then some portion of the larger cluster is merged with the smaller cluster. In this
case we must redistribute the points in the smaller cluster to return the misclassified points to the
large cluster. How can we redistribute the points in the smaller cluster? To do this operation, we
take the average of the two means as new means (Av_mean = (ml+ms)/2). This new mean is located
in the large cluster, and at the mid distance between the two clusters centers. We redistribute the
points in the small cluster over the new mean (Av_mean) and its original mean (ms). The means of
the two clusters are shifted. So, we use the next formula to redistribute the points of the small
cluster. We add a small value to the right hand side of relation 4, since we expect a small separation
between the two clusters and the mean of the smaller cluster is attracted to the large cluster. We
multiply the ratio between the two radiuses by 0.80 since the radius of the small cluster has error
percent larger than the other cluster

If (Dis(pi, Av_mean)<=Dis(pi , ms)+ radius(L)*0.80 / radius(S)) (4)

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2008|No.1(15)

40

If the formula 4 is true then the point pi is moved to the large cluster, otherwise it remains in
the smaller cluster. After redistribution of all points in the small cluster, we recalculate the new
means for the two clusters. All these processes are repeated for all clusters. So the final means of
our proposed method are better than those produced first from the k-means algorithm. The
following figure 3 shows the proposed function added to the k-means algorithm to improve the final
results.

For i=1 to k
 For j=i+1 to k
 Compute Euclidean distance d (mi, mj);
 Next j
 Next i

For j=1 to k/2
 Find the largest cluster L
 For i=1 to k
 If (radius(L)> radius(I)
 S=I
 Sum_of_radius = (radius(L) + radius(S))*0.80

 If (Sum_of_radius >= d (mL, mS)&&(radius(S) / radius(L)) < 0.90)
 Av_mean=(mL+mS)/2
 Redistribute points represented by mS over the two means mS and

Av_mean.
 All points assigned to Av_mean are moved to the cluster mL.
 Find the new mean for the cluster mS.
 Endif
 Endif
 Next i
 Find the new mean for the cluster mL.
Next j

Figure 3: Refinement process of the final results of the k-means algorithm

4. Experimental Results
In this section, we present some experimental evaluation of our proposed algorithm, which

reveals a great improvement in the k-means algorithm when the dataset contains spherical shaped
clusters with large variance in their size.

We have created many 2-dimensional datasets that contain spherical clusters of different sizes.
We present here three of them. All these datasets contain three clusters as shown in Figure 4. Table
1 presents the exact number of points in each cluster. Also we present the exact number of points in
each cluster found by the k-means and by our proposed algorithm.

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2008|No.1(15)

41

Table1: comparison between the results from the k-means and our proposed method

Data set Exact
clusters

k-mean
clusters

k-means
error

Proposed
clusters

proposed
error

1815 1210 1815
683 973 683 Dataset1
660 975

605 points
19.158 %

660

0 points
0.0 %

1582 1025 1582
703 1015 703 Dataset2
642 887

557 points
19.030 %

642

0 points
0.0 %

1582 1043 1585
557 816 552 Dataset3
522 802

539 points
20.256 %

524

7 points
0.263 %

The experimental results in this table show the great improvement at the final clusters
discovered by our proposed algorithm. When we examine the percent of error in our proposed
algorithm, we find that, our method produces the exact clusters in dataset1 and dataset2, because
there is a separation between clusters. But there is a small error at clusters discovered from dataset3,
note that, there is no separation between clusters. From table1 and figure 4 you can see that there
are 7 points misclassified: cluster B takes 5 points from cluster C, cluster A takes 2 points from
cluster B.

A

B
C

Dataset1 Dataset2 Dataset3
Figure 4: data set we used to test our proposed method

4. 1 Time Complexity

As we know, the time complexity of the k-means algorithm is O(nki); where n is the number
of data points in the dataset, k is the number of clusters and i is the number of iteration. Since we
use the k-means and then we apply our procedure, the time complexity is equal to the summation of
the two times. At first, our method finds the distances between the pair of k clusters so this
operation requires O(k2). Then we search for the largest cluster, that requires O(k), at most the
points of 3 or 4 clusters will be redistributed over their means and the average means, this operation
requires O(2mh); 2 is the two means, m is the number of points in the cluster and h is the number of
clusters, we redistribute their points. Since we redistribute the points in the smaller cluster so m <
n/2k, and h is very small, we can say h=4 at most. So the time complexity added to the k-means is
very small compared with the time complexity of the k-means itself. So, the time is O(k2+ mh), k <
n. At the end the time complexity is O(nki +k2 +mh).

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2008|No.1(15)

42

5. Conclusion
This paper represents a new procedure added to the end of the k-means clustering algorithm.

The objective of this procedure is to refine the results of the k-means. The procedure is optional. It
is strongly recommended to use after the k-means, especially when the dataset contains spherical
clusters with large difference in their sizes. Our experimental results show that the proposed method
improves the quality of the resulting clusters.

References
[1] Anderberg M R “Cluster Analysis for Applications”, Academic Press, 1973.

[2] Bradley P. S., Fayyad U. M. “Refining Initial Points for K-Means Clustering”, Proc. of the 15th
International Conference on Machine Learning (ICML98), J. Shavlik (ed.), pp. 91-99. Morgan
Kaufmann, San Francisco, 1998.

 [3] Fahim A. M., Salem A. M., Torkey F. A. and Ramadan M. “An efficient enhanced k-means
clustering algorithm”, Journal of Zhejiang University SCIENCE A, vol 7(10), pp. 1626-1633,
2006.

[4] Guha, S., Rastogi, R., Shim, K., “CURE: An Efficient Clustering Algorithms for Large
Databases”. Proc. ACM SIGMOD Int. Conf. on Management of Data. Seattle, WA, pp.73-84,
1998.

 [5] Jain A. K. and, Dubes R. C., “Algorithms for Clustering Data”, Prentice Hall, 1988.

 [6] Kaufman L. and Rousseeuw P., “Finding Groups in Data: An Introduction to Cluster
Analysis”: Wiley, 1990.

 [7] MacQueen J.B. “Some methods for classification and analysis of multivariate observations”.
Proc. 5th Symp. Mathematical Statistics and Probability, Berkelely, CA, Vol. 1, pp. 281–297,
1967.

 [8] Ray S. and Turi R. H., "Determination of number of clusters in k-means clustering and
application in colour image segmentation.", in Proceedings of the 4th International Conference
on Advances in Pattern Recognition and Digital Techniques, pp. 137-143, 1999.

Article received: 2008-03-13

This paper contains 4 Figures and 1 table

	References

