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Abstract
Quantum Error Correction will be necessary for preserving coherent states

against noise and other unwanted interactions in quantum computation and
communication. We have made a modest contribution for securing quantum information
using error code correction approach by the BB84 protocol. The aim of the research
presented in this paper is to investigate the Xor Linear code with Generator Matrix in
the quantum error correction. These techniques were found to provide a successful
method of quantum automated and a variety of the ciphers application, we would like to
explain Quantum Cryptography by the example of a standard polarization-based setup
(BB84 protocol). We estimate the practical limits of quantum cryptography. Then we
will present a special setup of Generator Matrix with linear codes. We will discuss the
performances of Xor linear code in current Quantum method applied in our laboratory
and, as a conclusion; we are principally interested to examine the relationship of Xor
linear codes and Generator Matrix which combines with cryptographic protection as
secure as quantum information.
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1. INTRODUCTION
Communication at high speeds, long distances, and in unknown environments often requires

combating noise that may affect or destroy data before it has reached its intended destination. When
designing robust, practical communication systems, it is important to take such effects into account
and engineer a system to be as immune to noise as possible. Classical communications often relies
upon various error detection and correction schemes, from the simple parity check to a variety of
more sophisticated correction algorithms, designed to ensure nearly error-free transmission of data.
Classical error-correction systems often employ redundancy and checksums to accomplish error
correction; however, error correction in quantum communication channels is complicated by the
fact that a qubit’s state is affected by measurement. Furthermore, one may only have a single copy
of each qubit to work with in quantum algorithms: in quantum cryptography algorithms such as
BB84, for instance, it does not make sense to re-transmit qubits prior to establishing a key. In this
paper, we explore the problem of quantum communications and present some of the simple
algorithms Xor linear codes with generation matrix that have been proposed to correct errors of
various types in a channel of qubits.

2. Quantum cryptography
 To understand how quantum cryptography works we can consider the "BB84"

communication protocol, which was introduced in 1984 by Charles Bennett of IBM and Gilles
Brassard from the University of Montreal. Alice and Bob are connected by a quantum channel and a
classical public channel (see Fig.1). If single photons are used to carry information the quantum
channel is usually optical fibre. The public channel, however, can be any communication link, such
as phone line or internet. Let us stop now a little and say something about information. The
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information in computer world is represented by series of 0's and 1's that assembled together in
defined order present information. That information can be anything numbers, words, pictures, we
only need to know how to interpret that binary information. Well, that 0 and 1 while travelling your
phone lines is represented like some voltage. Usually in the world of digital electronics logical 0
and 1 are represented like 0V and 5V considering the ground (sometimes -5V and 5V, and 0V can
represent some other state) [1].

 Alice begins by sending a message to Bob using a photon gun to send a stream of photons
randomly chosen in one of four polarizations that correspond to vertical, horizontal or diagonal in
opposing directions (0,45,90 or 135 degrees). For each individual photon, Bob will randomly
choose a filter and use a photon receiver to count and measure the polarization which is either
rectilinear (0 or 90 degrees) or diagonal (45 or 135 degrees), and keep a log of the results based on
which measurements were correct vis-à-vis the polarizations that Alice selected. While a portion of
the stream of photons will disintegrate over the distance of the link, only a predetermined portion is
required to build a key sequence for a onetime pad. Next, using an out of- band communication
system, Bob will inform Alice to the type of measurement made and which measurements were of
the correct type without mentioning the actual results. The photons that were incorrectly measured
will be discarded, while the correctly measured photons are translated into bits based on their
polarization. These photons are used to form the basis of a onetime pad for sending encrypted
information. It is important to point out that neither Alice nor Bob are able to determine what the
key will be in advance because the key is the product of both their random choices. Thus, quantum
cryptography enables the distribution of a one-time key exchanged securely [2].

Figure. 1. BB84 algorithm application setup

3. Practical limits of Quantum Cryptography
In the preceding chapters we learned about the principles of Quantum Cryptography and a

rather elegant and promising experimental implementation.
In this chapter we want to establish the practical limits of the Quantum cryptography: the data

rate and the quantum bit error rate [3, 4].

3.1 The Data Rate
Let us consider a Quantum Cryptography setup with a laser pulse rate v. μ  is the average

number of photons at the output of Alice, ηd and ηt are the detector and transfer efficiency,
respectively. Hence the raw data rate R, i.e. the number of exchanged bits per second before any
error correction, is given by:

R=q μ  v ηt ηd                                                   (1)
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q is a systematic factor depending on the chosen implementation. It cannot be bigger than 1/2
due to the fact that half of the time the randomly chosen bases of Alice and Bob are not compatible.
The raw bit rate R will be further reduced when error correction and privacy amplification are
applied, depending on the error rate and the used algorithm. The total transfer ηt efficiency between
the outputs of Alice to the detector can be expressed as:
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where Lf is the losses in the fibre in dB/km, l is the length of the link in km and LB are
internal losses at Bob in dB.

The losses in optical fibres are typically around 2 dB=km at 800 nm, 0,35 dB=km in the 1300
nm telecom window, and 0,2 dB=km in the 1550 nm telecom window.

3.2 The Quantum Bit Error Rate
The error is generally expressed as the ratio of wrong bits to the total amount of detected bits.

We call this quantity quantum bit error rate (QBER). It is equivalent to the ratio of the probability
of getting a false detection to the total probability of detection per pulse:
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darkP , photP , and optP  are the probabilities to get a dark count, to detect a photon, and the
probability that a photon went to an erroneous detector, respectively. ndark is the dark count rate of
the detector and τΔ  is the detection time window. This formula applies for a setup with two
detectors. Since a dark count will with a 50% chance not lead to an error, but just to an additional
count, there is a factor two in the denominator, but not in the numerator. Note that the QBER is
independent of the factor q of (3), since we do not consider errors when incompatible bases are used
[5].

The QBER consists of two parts. The first part is what we call QBERopt, that is the fraction of
photons optP  whose polarization or phase is erroneously determined, i.e. the fraction of photons
who end up in the wrong detector. This is mainly due to depolarization and to poor polarization
alignments or due to the limited visibility of the interferometers. optP  Can be determined by
measuring the polarization ratio, the extinction ratio or the classical fringe visibility V. In our
interferometer setup presented in the preceding section we measured a optP of 0:15%. Generally optP
below 1% can be easily achieved with any setup.

The second part, QBERdet, is due to the dark count rate of the photon counters and increases
with decreasing transfer efficiency ηt . Hence QBERdet is the determining factor for longer
transmission distances. The detector dark count rate finally limits in combination with the losses in
the fibres the transmission distance. Since fibre losses have already attained the physical limits, the
detectors deserve a thorough discussion [6, 7].
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4. Quantum error detection and correction
Quantum error-correcting codes are based on qubits and protect quantum states from error.

An important challenge in quantum codes is that the quantum error can be continuous. Specifically,
we can consider a quantum error as an arbitrary unitary linear operator lhat transfers a quantum
state lo a corrupted state. For one-qubit systems, the quantum error operator is a 2 x 2 complex
unitary matrix. In this paper we consider three types of quantum errors: The bit flip error
represented by matrix X , the phase flip error represented by matrix Z, and the combination of bit
and phase flips Y = -iZX. Together with the identity matrix, I, X, Y, and Z are the well known Pauli
matrices [8]:

Any unitary operator acting on one qubit can be expressed as
a linear combination of the Pauli matrices. Therefore, a code
capable of correcting these three types of errors are able to correct
any errors generated as linear combinations of these matrices. A

Pauli operator on N qubits can be expressed as a sequence of N operators, each one of them being a
PauIi matrix and acting on a different qubit [9].

A stabilizer group S is a set of Pauli operators on N qubits, so that the set is closed under
multiplication and any two operators in he set commute (which occurs when disregarding the
position where one of them is equal to I, they differ in an even number of positions). Obviously, it
is enough to check the commutation property on a set of generators. Given the set of stabilizer
generators {Si), a quantum codeword is defined as a state |ψ 〉  that is a +1 eigenstate of all the
stabilizers (i.e., Si|ψ 〉 =|ψ 〉 for all i). The set of error operators {E} is a set of Pauli operators taking
a quantum state > to the corrupted state E|ψ 〉 . Since all of them are Pauli operators, a given error
operator E either commutes or anticommutes with each stabilizer generator Si. Therefore, E|ψ 〉 is
an eigenstate of Si for all i. The syndrome is defined as the “commutation status” (either commute
or non-commute) of E|ψ 〉 with respect to all the stabilizers, and is completely determined by the
commutation properties of E with the stabilizers and independent of the quantum state |ψ 〉 .

Given any Pauli operator on N qubits, we can write it uniquely as a product of an X-
containing operator (i.e., using only matrices X and I), a Z-containing operator, and if phase factor
(+1, -1, i or - i). Then, we can express the X-(Z) containing operator as a binary string of length N,
with’ 1’ standing for X (Z) and ’0’ for I. For instance,

XIYZYI = - (XIXIXI) x (IIZZZI)
              =   (101010/001110)                        (5)

In this way, we can represent each stabilizer as a binary vector, and write the set of generators
of S as a binary matrix A = (H/G), where row i of H corresponds to the X-containing operator of
stabilizer generator i, and row i of G is the binary representation of the Z-containing operator of
stabilizer generator i. With this binary representation, the commutatively of stabilizers appears as
orthogonal of the rows of G and H with respect to a twisted product. In matrix representation, the
twisted product property can be expressed as:

G HT + H GT =0.                                             (6)

A Pauli error operator E can be interpreted as a binary string (e) of length 2N. By reversing
the order of the X and Z strings in the error operator, the ordinary dot product (mod 2) of (e) with a
row of the matrix A is 0 if E and the stabilizer represented by that row commute and 1 otherwise.
Thus, the quantum syndrome for the error operator E is exactly the classical syndrome (Ae) where
matrix A = (H/G), called quantum parity check matrix, acts as the standard parity check matrix and
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(e) as binary error pattern. Therefore, we can conclude that from any binary matrix (H/G) of size
MQ x 2N satisfying (1), it is possible to construct an equivalent quantum code that encodes N - MQ
qubits in N qubits.

5. Problematic
In spite of the considerable progress in the quantum encryption (encoding) many questions

remain asked and many problems cannot be solved using the present techniques (Noise due to
quantum uncertainty).

Noise due to quantum uncertainty: In quantum mechanics, Heisenberg’s uncertainty
principle forbids two non-commuting observables to both take a definite value simultaneously. For
instance, in a state of the electromagnetic field in which the energy is well-defined, the field
amplitude cannot take a definite value. This is true, in particular, in the electromagnetic vacuum
(i.e., in the total absence of light) where the measurable energy is strictly zero. Because of the
uncertainty principle, however, the field amplitude cannot also take the value of zero but must
fluctuate randomly.

These vacuum fluctuations have very important consequences for optical telecommunications,
as they constitute a fundamental source of noise that contaminates an optical signal at every stage of
its life, its generation noises. Since the subject of the quantum noise is limitations of optical
communications systems.  We review here very briefly a few well-known examples of the direct
manifestations of vacuum fluctuations in the different functionalities of a telecommunications
system.

6. Discussion
The noise in physical qubits is fundamentally asymmetric: in most devices, phase errors are

much more probable than bit flips. We propose a quantum error correcting code which takes
advantage of this asymmetry and shows good performance at a relatively small cost in redundancy,
requiring less than a doubling of the number of physical qubits for error correction.

This precise point is the aim of our work; we will try knowing a new error correction code in
quantum method cryptography thus coupling them with techniques borrowed from signal
processing with purely quantum theories in order not to lose the information or to make sure to
maintain the communication between Alice and Bob using BB84 protocol.  

7. Xor Linear Codes with Generator Matrix
We focus on systematic Xor LCGM codes, which are linear codes with sparse generator

matrix, [I P], with P = [pm]. The information message to be transmitted, u = [u1, u2,…, uL] together
with the coded (parity) bits, c = [cl, c2, …, cM] generated as c = P.u, are transmitted through the
channel.

The corrupted sequence at the decoder is denoted as (u)’ (c)’] where cm’ = cm+e1m and ul’=
ul+e2l, with e1m and e2l being the error pattern {or noise) introduced by the channel. Notice that the
code above is an L/(L+M) rate systematic code. We will use the notation (X, Y) LCGM code to
indicate that the degrees of the systematic bit nodes and the parity nodes are X and Y, respectively.

7.1 Xor Linear Codes
In order to have a total secured emission, we must introduce coding part in the information

message u = [u1, u2,…, uL] , before this setup secure transmission of polarization photons bases. The
message: 1101001110010111…

Part 1: 11/01/00/11/10/01/01/11/… We cut the message by pairs of bits.
Part 2: We carry out the XOR sum for the bits existing in the pairs before to find an origin

Bit: (0), (1), (0) …
Part 3: We call on a parity bit:
- If the number is even 0.
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- If the number is odd 1.
A new message that is a set of 00 and 11 with a masking technique at the some time, then we

risk the least error detection to Bob's message reception: (00), (11), (00)…
Part 4: There is a problem that intervenes in this part and that is how to know whether the

XOR = 1, if the bits (01) or (10) and whether the XOR =0 the bits (00) or (11), thus additional bits
are necessary, they are the XOR Bits:

XOR =0:
00 (0 for the bits 00, 0 for the XOR) 00
11 (1 for the bits11, 0 for the XOR) 10
XOR =1:
01(0 for 01, 1 for XOR) 01
10(1 for 10, 1 for XOR) 11

AB                      XOR Bits
C                         parity bit
D                        origin Bit

When we call on all combinations that may appear while applying this method:
00                      1000, 11                         0000

01                      0111, 10                          1111

The first three bits have always the some which speeds up the errors detection.

8. Conclusion
Quantum key distribution process requires error correction code in order to secure the

transmitted data in optical communication networks.
Our survey involves different sources of noise generated in optical communication systems

and in order to protect the information we should use the BB84 protocol with cryptography control
error reconciliation. A large scale protection in quantum information is the aim of our research work
carried out within our laboratory.

We have made a modest contribution for securing quantum information using error code
correction approach by the BB84 protocol. Several experiments have demonstrated the viability of
the conduction of free space quantum cryptography at the surface of the Earth, we propose in this
survey a new idea for coding error corrector in BB 84 with Xor Linear Codes with Generator
Matrix in order not to lose, and to secure the information during the communications between the
users. Our future aim is to elaborate an algorithm capable of detecting and correcting errors in
quantum cryptography.
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