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Abstract 

The k-means algorithm is one of the most widely used methods to partition a 
dataset into groups of patterns. However, the k-means method converges to one of many 
local minima. And it is known that, the final result depends on the initial starting points 
(means). We introduce an efficient method to start the k-means with good starting points 
(means). The good initial starting points allow the k-means algorithm to converge to a 
“better” local minimum, also the number of iteration over the full dataset is decreased. 
Our experimental results show that, good initial starting points lead to improved 
solution. 
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1. Introduction 
Classifying objects according to similarities is the base for much of science. Organizing 

objects into sensible grouping is one of the most fundamental modes of understanding and learning. 
Cluster analysis is the study of algorithms for grouping or classifying objects [8]. So a cluster is 
comprised of number of similar objects collected or grouped together. Clustering is a process in 
which a group of unlabeled objects are partitioned into a number of sets so that similar objects are 
assigned to the same cluster, and dissimilar objects are assigned to different clusters. There are two 
goals of clustering algorithms: (1) determining good clusters and (2) doing so efficiently. Clustering 
has become a widely studied problem in a variety of application domains including data mining and 
knowledge discovery [4], [7], data compression and vector quantization [5], pattern recognition and 
pattern classification [2], neural networks, artificial intelligence, and statistics.  

Several clustering algorithms have been proposed. These algorithms can be broadly classified 
into hierarchical and partitioning clustering algorithms [8]. Hierarchical algorithms decompose a 
database D of n objects into several levels of nested partitioning (clustering), represented by a 
dendrogram (tree). There are two types of hierarchical algorithms; an agglomerative that builds the 
tree from the leaf nodes up, whereas a divisive builds the tree from the top down. Partitioning 
algorithms construct a single partition of a database D of n objects into a set of k clusters, such that 
the objects in a cluster are more similar to each other than to objects in different clusters.  

The k-means clustering algorithm is the most commonly used [8] because it can be easily 
implemented, speed convergence to local minimum. However this local minimum depends on the 
initial starting means. In this paper, we introduce an efficient method to obtain good initial starting 
means, so the final result will be better than that of randomly selected initial starting means. How to 
get good initial starting means becomes an important operational objective. To solve this problem, 
[1] proposed an algorithm based on selecting J of subsamples, cluster them independently 
producing J estimates of the true cluster locations, and apply the k-means on this result to get the 
refined initial starting points. While this method can improve the final results but the final results 
depend on the quality of the selected subsamples, number of samples and the size of sample. We 
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propose an efficient method for implementing the k-means algorithm. It can produce better 
clustering results on most cases. Our algorithm scans the dataset block by block; produces k 
representative objects for each block, the algorithm keeps the results from each block, and applies 
the k-means algorithm to the collected results from all blocks to get the initial starting points. In 
other words, the proposed algorithm compressed the data into smaller dataset by producing k means 
from each block, if the dataset contains j blocks, then the compressed data will contains k*j objects. 
Our algorithm scans the original dataset two times and produces better clusters. This paper is 
organized as follows, in section 2 we present the algorithms related to our work. In section 3 we 
present our proposed algorithm which we refer to it as k-means block. We present some 
experimental results in section 4 and conclude with section 5.  

2. Related Work 

There are many algorithms for clustering datasets. The k-means clustering is the most popular 
method used to divide n patterns {x1, …, xn} in d dimensional space into k clusters[8]. The result is 
a set of k centers, each of which is located at the centroid of the partitioned dataset. This algorithm 
can be summarized in the following steps: 

1. Initialization: Select a set of k starting points {mj}, j = 1, 2,…, k. The selection 
may be done in random manner or according to some heuristic. 

2. Distance calculation: For each pattern xi , ni ≤≤1  compute its Euclidean 
distance to each cluster centroid mj,                 , and then find the closest cluster 
centroid mj and assign the object xi to it.  

kj

3. Centroid recalculation: For each cluster j,               recompute cluster centroid mj 
as the average of the data points assigned to it.  

4. Convergence condition: Repeat steps 2 and 3 until convergence. 

To choose a proper number of clusters k is a domain dependent problem. To resolve this, 
some researchers have proposed methods to perform k-clustering for various numbers of clusters 
and employ certain criteria for selecting the most suitable value of k [11] and [10]. 

Several variants of the k-means algorithm have been proposed. Their purpose is to improve 
efficiency or find better clusters. Improved efficiency is usually accomplished by either reducing 
the number of iterations to reach final convergence or reducing the total number of distance 
calculations, you can see [3], [6]. The k-means algorithm randomly selects k initial cluster centers 
from the original dataset. Then, the algorithm will converge to the actual cluster centers after 
several iterations. Therefore, choosing a good set of initial cluster centers is very important for the 
algorithm. However, it is difficult to select a good set of initial cluster centers randomly. 

Bradley and Fayyad have proposed an algorithm for refining the initial cluster centers. We 
present a simple review of this algorithm. For more details see [1]. This algorithm select j 
subsamples from the dataset, apply the k-means algorithm on each subsample independently. If, at 
termination of K-Means, there are empty clusters then reassigning all empty clusters to points 
farthest from their respective centers. At the end of this phase there will be set of data contains k*j 
objects, since each subsample represented by k representative objects. Then they apply the k-means 
for the second time to produce the k refined initial centers from k*j objects. Note that, in this 
algorithm the k-means algorithm will be applied j times, in each time it takes the k representative 
for a sample as starting point, and distributes the k*j objects over these representatives, keeps the 
mean squared error for each sample of starting point, this process is similar to CLARA algorithm 
[9] with small difference, this difference is the CLARA restricts the goodness of representative to 
one sample only, while this algorithm test the goodness of representative over all samples. This 
algorithm can be summarized in the following steps: 
 

≤≤1

kj ≤≤1
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0. CM = φ 
1. For i=1,…,J 
      a. Let Si be a small random subsample of data 
      b. Let CMi = KMeans (SP, Si, K) 
      c. CM = CM U CMi 
2. FMS = φ 
3. For i=1,…,J 
      a. Let FMi = KMeans(CMi, CM, K) 
      b. Let FMS = FMS U FMi 
4. Let FM = ArgMin{Distortion(FMi ,CM)} 
                           FMi 
5. Return (FM) 
   

In this algorithm the KMeans function takes three input parameters; they are the initial starting 
points (SP), the random subsample (Si) and the required number of clusters (K). This algorithm 
based on samples, the authors use sample of size 1% of the full dataset size, and use 10 subsamples. 
By examining step 3 of the algorithm, we find that the final result produced from one sample of size 
10% from the full dataset. And the good result based on sample is not necessary good for the full 
dataset.  Our proposed algorithm is similar to this algorithm, but it does not depend on sample. Our 
algorithm partitions the dataset into blocks and applies the k-means on each block. Our proposed 
method uses a simple process to obtain initial cluster centers from a compressed dataset. These 
centers are very close to the actual cluster centers of the original dataset, and so only a few 
iterations are needed for convergence. 

 

3. The Proposed Algorithm 
In this section we describe our algorithm. That produces good starting points for the k-means 

algorithm instead of selecting them randomly. And this will leads to better clusters at the final result 
than that of the original k-means. 

 

3.1 The proposed Methodology 
The main idea of this algorithm is to compress the dataset into finite number of representative. 

Each representative is the mean value of some data points form a small cluster. In our algorithm we 
compress the data set of size N into smaller data set of size k*m; where k is the required number of 
partition for each block, m is the number of blocks. This process has been done at the first phase. In 
the second phase we apply the k-means on the compressed dataset, to get the k representative points 
that will be the initial starting points for the k-means on the full dataset. The idea of compression of 
dataset comes from the BIRCH algorithm. The BIRCH algorithm [12] compresses the dataset into 
cluster feature vectors based on some statistics like the size of the leaf node and the branching 
factor for the internal nodes. The pre-clustering algorithm employed by BIRCH is to reduce the size 
of data set, is incremental and approximate. During pre-clustering, the entire database is scanned, 
and cluster summaries are stored in memory in a data structure called the CF-tree. For each 
successive data point, the CF-tree is traversed to find the closest cluster to it in the tree, and if the 
point is within a threshold distance of the closest cluster, it is absorbed into it. Otherwise, it starts its 
own cluster in the CF-tree. Once the clusters are generated, a final labeling phase is carried out in 
which using the centroids of clusters as seeds, each data point is assigned to the cluster with the 
closest seed.  
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3.2 The proposed K-means Block Algorithm. 
Returns to our proposed algorithm, we divide the data set into 10 blocks in our experimental 

results. The size of block varies according to the size of data. We apply the k-mean on each block 
independently, to produce k centers for each block, so if the dataset partitioned into m blocks, then 
the compressed data will contains m*k objects. Each block is small compared with the full dataset. 
Also the compressed data is very small regards to the full dataset. We apply the k-means on the 
compressed data to produce k centroids. We take the resulting k centroids to be the initial starting 
points for the k-means algorithm that works on the full dataset. In this case the number of iteration 
will be decreased, and a better means will be founded. Our algorithm regards the effect of each 
point on the means, and does not restrict the effect of the sample like in [1]. Our algorithm scan the 
data two times; at the first phase to compress the dataset, the second time when distribute the full 
dataset points over the initial centroids produced from the compressed dataset. When we look at 
each block, we may find that the block represents a sample of dataset, if the block contains objects 
distributed over all the space, so the k representative means for this block will be lie near to the final 
means of the full dataset. On the other side, if the block contains objects that fall in a small portion 
of the space, then the k representatives for this block will be very close to each other and some of 
them will be merged together when applying the k-means on the compressed dataset. Figure 1 
explains our idea, the dataset contains five clusters, and we partition the dataset into two blocks. 
Figure 1.a represents the dataset, Fig.1.b and 1.c represent two probability for the data in each 
block; in Fig.1.b the block represents a sample of points distributed over all the data space, while in 
Fig.1.c the block represents an area of the data space.  

 

 

 

 

 

 

 

 
                a) Dataset                                b) Two blocks of the data                   c) Two blocks of the data 

Fig. 1: Dataset contains 5 clusters, the 2 blocks of the data may be like as in b or c 
 

When we apply the k-means on the two blocks represented by Fig 1.b and 1.c we will obtain 
the result shown in Figure 2 

 
 
 
 
 
 
 
 
 
                 a) Result from Fig. 1.b                                                           b) Result from Fig. 1.c 

 
  The k means of white block (white circles),       the k means of green block (green circles) 
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Fig. 2: The compressed dataset generated from 2 blocks of data 
 
 
 
 
 
 
 
 
 

Fig. 3 the final 5 clusters 
 

At this point we obtain the compressed dataset that contains m*k (k representative points for 
each block) means resulting from the m blocks. We apply the k-means algorithm on this 
compressed dataset to find the final k means. This final k means will be the initial starting points for 
applying the k-means algorithm over the full dataset. Returns to our example, the final k means for 
the compressed dataset will be nearly the same for the two probabilities of the blocks in Fig. 1. And 
the final result of our algorithm will be as in Figure 3.  

   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.a: An overview of the k-means block 
 

 
 
 
 
 
 
 
 
 
 
 
 
                                        Fig. 4.b: The main steps of the proposed algorithm. 

 
                                                 Fig. 4: The K-means block algorithm 

1. Set the size of the block 
2. i=0 
3.    While not end of file 
4.          Read the Blocki 
5.          k-means(Blocki, k) 
6.          (Write/Append) the means to output file 
7.          i=i+1 
8.     End while 
9.   k-means(compressed dataset, k)  
10. k-means(dataset, final means, k)   

Dataset M Blocks M solution
Compressed dataset 
contains M solution 
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- 
-

-
- 
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Initial K starting points 
for the second phase 

K-means 
algorithm 

K-means 
algorithm 
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the initial k 
starting points 

The final clusters 
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From the previous Figures (1 to 3) we note that; when the block represents a sample 

distributed over all the data space, the generated means will be very condensed on specified areas as 
in Fig 2.a. But when the block represents a sample distributed over certain area of the data space, 
the generated means will be scattered over the data space, but we find that these means scattered 
over groups as in Fig.2.b. Figure 4 summarizes the steps of the k-means block algorithm. 

Note that, in figure 4.b, the algorithm determines the size of each block and the user should 
determine the required number of partitions in each block. The value of k may be changed when 
applying the k-means on the compressed and the full dataset. From experimental results it will be 
better when we use small value for k at the first phase of our algorithm, at the second phase we 
change the value of k to the required number of clusters as a final results. So the value of k in steps 
9, 10 may be different from the value of k in step 5.  In line 10, the k-means start with the k points 
generated from the compressed dataset in line 9 and applied on the full dataset. 

 

3.3 Computational Complexity 
The k-means block algorithm is primarily intended to work on large datasets. Since our 

method works on small blocks of the data, the initialization of good starting points is fast. We use 
block sizes of 10% of the full dataset size, so to get the compressed dataset it will require O(mbkl); 
m is the number of blocks, b is the size of block, k is the number of clusters and l is the number of 
iterations.  At the worst case this time will be equals to the time required by the k-means to cluster 
the full dataset.  The time required to get the final k means from the compressed dataset is 
negligible, since the compressed dataset is very small compared with the full dataset. At the final 
phase we apply the k-means over the full dataset starting with the final k means resulting from the 
compressed dataset, this lead to a few number of iteration of the k-means. The time complexity of 
the second phase is O(nk), where n is the size of the full dataset, and k is the number of clusters. So 
the overall time complexity will be O(nk + mbkl). At the worst case this time will be the running 
time of the k-means two times. 

 

 

 

4. Experimental Results  
We have evaluated our proposed algorithm on both synthetic and real datasets. We compared 

our results with that of the original k-means algorithm in terms of the total quality of clusters and 
the execution time for both algorithms. We give a brief description of the datasets used in our 
algorithm evaluation. Table 1 shows some characteristics of these datasets. 
 
 
                                                 
                                              Table 1: Characteristic of the Datasets 

 
Dataset Number of 

Records 
Number of 
Attributes 

Type of 
dataset 

Db1 3159 2 Synthetic 
Letters 20000 16 real 
Iris 150 4 real 
Abalone 4177 8 real 
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Table 2: The results of the proposed algorithm compared with that of k-means 
 

k-means k-means block dataset k MSE iterations Time in sec. MSE iterations Time in sec. 
Db1 3 5.221 13 < 1 4.776 2 < 1 
letters 26 139.315 18 18 135.778 11 27 
letters 30 161.203 45 51 159.659 14 36 
letters 20 112.765 23 18 112.718 13 21 
letters 10 65.210 8 3 64.267 5 7 
Iris 3 1.942 4 < 1 1.942 4 < 1 
Abalone 29 8.913 4 < 1 7.582 4 2 

Note that: The value of k in table 2 is fixed for the two phase of the algorithm. 
 

From the results in table 2 and in figures from 5 to 8, we find that our proposed algorithm 
produces better results than that of the k-means algorithm; our proposed algorithm is designed for 
large datasets. And it produces better result as the dataset contains large number of clusters. In this 
case the run time of the proposed algorithm will be smaller than that of the k-means. And we can 
decrease the running time by inserting small value for k when applying the k-means on the blocks 
provided that the compressed dataset contains number of points larger than the final number of 
clusters in the full dataset. For example, when we partition the letters dataset into 30 clusters, we 
partition each block into 10 clusters, the compressed dataset contains 100 representative objects, 
and then we partitioned this dataset into 30 clusters to get the initial starting points for the k-means 
in the next phase. The MSE is 156.397171, the iteration is 22, and the running time is 30 second as 
shown in Figure 8. And this result is better than that exist in table 2. This occurs because the final 
result will depends on the size of the block, number of clusters, this number may be constant along 
the run time of the algorithm, and we can make it varies on the compressed dataset. When the 
dataset contains large number of clusters ( >40) it is better to partition each block to small number 
of clusters, provided that the resulting compressed dataset contains sufficient number of points( > 
the number of clusters in the full dataset).  

 

 

 

 

 

 

 

 

 

 

Fig. 5: mean square error comparison between k-means and k-means block 
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Fig. 6: Iteration comparison between k-means and k-means block 

 

 

 

 

 

 

 

 

 

Fig. 7: Run time comparison between k-means and k-means block 

 

 

 

 

 

 

 
 

Fig. 8:  Great improvement in run time, iteration and MSE, when each block is portioned into small number of clusters, 
producing the required number of clusters at the final phase. 
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Table 3: The results of the proposed algorithm compared with that of k-means 
On letters data set with small value for k at the first phase and large value for k at the second phase 

 
k-means k-means block K 1st 

Phase 
K 2nd 
phase MSE iterations Time in 

sec. 
MSE iterations Time in 

sec. 
10 30 161.203 45 51 156.397 22 30 
20 60 277.430 30 69 269.835 12 38 
10 90 387.869 18 62 372.735 16 59 

 
 
From our experimental results in table 3, we recommend to use small value for k when we 

apply the k-means on the blocks. And the actual value for k when applying the k-means on the 
compressed dataset and the full dataset. These results are shown in Figures 8, 9, and 10. We use the 
letters dataset since it is the largest dataset we have, it contains 20000 points in 16 dimensions.  
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9:  Great improvement in iteration and MSE, when each block is portioned into 20 clusters, producing 
60 clusters at the final phase. 
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Fig. 10:  Great improvement MSE, when each block is portioned into 10 clusters, producing 90 clusters at 
the final phase. 

So our proposed algorithm is suitable for large datasets, and it perform well when the dataset 
contains large number of clusters, and this proves that the good initial starting points lead to a better 
clustering solution. 
 

5. Conclusion  

In this paper we have presented a simple idea that make the k-means more efficient and 
produce good quality clusters. Our idea depends on the good selection of the starting points for the 
k-means. To select a good initial solution we partition the dataset into blocks, and applied the k-
means on each block, we get a compressed dataset, we apply the k-mean on it with the same value 
of k or larger to get good starting means, and redistributes the points in the full dataset over these 
starting means. Our experimental results demonstrated that the proposed algorithm produces better 
results than that of the k-means algorithm.   
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