
Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2009|No.2(19)

 47

An Efficient K-Means with Good Initial Starting Points

Fahim A.M.1 Salem A. M.2 Torkey F. A.3 Ramadan M. A.4 Saake G.5

1Faculty of information, Otto-von-Guericke-University, Magdeburg, Germany, ahmmedfahim@yahoo.com
2Faculty of Computers & Information, Ain Shams University, Cairo, Egypt, absalem@asunet.shams.edu.eg

3Kaferel shiekh University, Kaferel sheikh, Egypt, fatorkey@Yahoo.com
4Faculty of Science, Minufiya University, Shbien el koum, Egypt, mramadan@mailer.eun.eg

5Faculty of information, Otto-von-Guericke-University, Magdeburg, Germany, saake@iti.cs.uni-magdeburg.de

Abstract

The k-means algorithm is one of the most widely used methods to partition a
dataset into groups of patterns. However, the k-means method converges to one of many
local minima. And it is known that, the final result depends on the initial starting points
(means). We introduce an efficient method to start the k-means with good starting points
(means). The good initial starting points allow the k-means algorithm to converge to a
“better” local minimum, also the number of iteration over the full dataset is decreased.
Our experimental results show that, good initial starting points lead to improved
solution.

Keywords: clustering algorithms, k-means algorithm, and data clustering.

1. Introduction
Classifying objects according to similarities is the base for much of science. Organizing

objects into sensible grouping is one of the most fundamental modes of understanding and learning.
Cluster analysis is the study of algorithms for grouping or classifying objects [8]. So a cluster is
comprised of number of similar objects collected or grouped together. Clustering is a process in
which a group of unlabeled objects are partitioned into a number of sets so that similar objects are
assigned to the same cluster, and dissimilar objects are assigned to different clusters. There are two
goals of clustering algorithms: (1) determining good clusters and (2) doing so efficiently. Clustering
has become a widely studied problem in a variety of application domains including data mining and
knowledge discovery [4], [7], data compression and vector quantization [5], pattern recognition and
pattern classification [2], neural networks, artificial intelligence, and statistics.

Several clustering algorithms have been proposed. These algorithms can be broadly classified
into hierarchical and partitioning clustering algorithms [8]. Hierarchical algorithms decompose a
database D of n objects into several levels of nested partitioning (clustering), represented by a
dendrogram (tree). There are two types of hierarchical algorithms; an agglomerative that builds the
tree from the leaf nodes up, whereas a divisive builds the tree from the top down. Partitioning
algorithms construct a single partition of a database D of n objects into a set of k clusters, such that
the objects in a cluster are more similar to each other than to objects in different clusters.

The k-means clustering algorithm is the most commonly used [8] because it can be easily
implemented, speed convergence to local minimum. However this local minimum depends on the
initial starting means. In this paper, we introduce an efficient method to obtain good initial starting
means, so the final result will be better than that of randomly selected initial starting means. How to
get good initial starting means becomes an important operational objective. To solve this problem,
[1] proposed an algorithm based on selecting J of subsamples, cluster them independently
producing J estimates of the true cluster locations, and apply the k-means on this result to get the
refined initial starting points. While this method can improve the final results but the final results
depend on the quality of the selected subsamples, number of samples and the size of sample. We

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2009|No.2(19)

 48

propose an efficient method for implementing the k-means algorithm. It can produce better
clustering results on most cases. Our algorithm scans the dataset block by block; produces k
representative objects for each block, the algorithm keeps the results from each block, and applies
the k-means algorithm to the collected results from all blocks to get the initial starting points. In
other words, the proposed algorithm compressed the data into smaller dataset by producing k means
from each block, if the dataset contains j blocks, then the compressed data will contains k*j objects.
Our algorithm scans the original dataset two times and produces better clusters. This paper is
organized as follows, in section 2 we present the algorithms related to our work. In section 3 we
present our proposed algorithm which we refer to it as k-means block. We present some
experimental results in section 4 and conclude with section 5.

2. Related Work

There are many algorithms for clustering datasets. The k-means clustering is the most popular
method used to divide n patterns {x1, …, xn} in d dimensional space into k clusters[8]. The result is
a set of k centers, each of which is located at the centroid of the partitioned dataset. This algorithm
can be summarized in the following steps:

1. Initialization: Select a set of k starting points {mj}, j = 1, 2,…, k. The selection
may be done in random manner or according to some heuristic.

2. Distance calculation: For each pattern xi , ni ≤≤1 compute its Euclidean
distance to each cluster centroid mj, , and then find the closest cluster
centroid mj and assign the object xi to it.

kj

3. Centroid recalculation: For each cluster j, recompute cluster centroid mj
as the average of the data points assigned to it.

4. Convergence condition: Repeat steps 2 and 3 until convergence.

To choose a proper number of clusters k is a domain dependent problem. To resolve this,
some researchers have proposed methods to perform k-clustering for various numbers of clusters
and employ certain criteria for selecting the most suitable value of k [11] and [10].

Several variants of the k-means algorithm have been proposed. Their purpose is to improve
efficiency or find better clusters. Improved efficiency is usually accomplished by either reducing
the number of iterations to reach final convergence or reducing the total number of distance
calculations, you can see [3], [6]. The k-means algorithm randomly selects k initial cluster centers
from the original dataset. Then, the algorithm will converge to the actual cluster centers after
several iterations. Therefore, choosing a good set of initial cluster centers is very important for the
algorithm. However, it is difficult to select a good set of initial cluster centers randomly.

Bradley and Fayyad have proposed an algorithm for refining the initial cluster centers. We
present a simple review of this algorithm. For more details see [1]. This algorithm select j
subsamples from the dataset, apply the k-means algorithm on each subsample independently. If, at
termination of K-Means, there are empty clusters then reassigning all empty clusters to points
farthest from their respective centers. At the end of this phase there will be set of data contains k*j
objects, since each subsample represented by k representative objects. Then they apply the k-means
for the second time to produce the k refined initial centers from k*j objects. Note that, in this
algorithm the k-means algorithm will be applied j times, in each time it takes the k representative
for a sample as starting point, and distributes the k*j objects over these representatives, keeps the
mean squared error for each sample of starting point, this process is similar to CLARA algorithm
[9] with small difference, this difference is the CLARA restricts the goodness of representative to
one sample only, while this algorithm test the goodness of representative over all samples. This
algorithm can be summarized in the following steps:

≤≤1

kj ≤≤1

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2009|No.2(19)

 49

0. CM = φ
1. For i=1,…,J
 a. Let Si be a small random subsample of data
 b. Let CMi = KMeans (SP, Si, K)
 c. CM = CM U CMi
2. FMS = φ
3. For i=1,…,J
 a. Let FMi = KMeans(CMi, CM, K)
 b. Let FMS = FMS U FMi
4. Let FM = ArgMin{Distortion(FMi ,CM)}
 FMi
5. Return (FM)

In this algorithm the KMeans function takes three input parameters; they are the initial starting
points (SP), the random subsample (Si) and the required number of clusters (K). This algorithm
based on samples, the authors use sample of size 1% of the full dataset size, and use 10 subsamples.
By examining step 3 of the algorithm, we find that the final result produced from one sample of size
10% from the full dataset. And the good result based on sample is not necessary good for the full
dataset. Our proposed algorithm is similar to this algorithm, but it does not depend on sample. Our
algorithm partitions the dataset into blocks and applies the k-means on each block. Our proposed
method uses a simple process to obtain initial cluster centers from a compressed dataset. These
centers are very close to the actual cluster centers of the original dataset, and so only a few
iterations are needed for convergence.

3. The Proposed Algorithm
In this section we describe our algorithm. That produces good starting points for the k-means

algorithm instead of selecting them randomly. And this will leads to better clusters at the final result
than that of the original k-means.

3.1 The proposed Methodology
The main idea of this algorithm is to compress the dataset into finite number of representative.

Each representative is the mean value of some data points form a small cluster. In our algorithm we
compress the data set of size N into smaller data set of size k*m; where k is the required number of
partition for each block, m is the number of blocks. This process has been done at the first phase. In
the second phase we apply the k-means on the compressed dataset, to get the k representative points
that will be the initial starting points for the k-means on the full dataset. The idea of compression of
dataset comes from the BIRCH algorithm. The BIRCH algorithm [12] compresses the dataset into
cluster feature vectors based on some statistics like the size of the leaf node and the branching
factor for the internal nodes. The pre-clustering algorithm employed by BIRCH is to reduce the size
of data set, is incremental and approximate. During pre-clustering, the entire database is scanned,
and cluster summaries are stored in memory in a data structure called the CF-tree. For each
successive data point, the CF-tree is traversed to find the closest cluster to it in the tree, and if the
point is within a threshold distance of the closest cluster, it is absorbed into it. Otherwise, it starts its
own cluster in the CF-tree. Once the clusters are generated, a final labeling phase is carried out in
which using the centroids of clusters as seeds, each data point is assigned to the cluster with the
closest seed.

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2009|No.2(19)

 50

3.2 The proposed K-means Block Algorithm.
Returns to our proposed algorithm, we divide the data set into 10 blocks in our experimental

results. The size of block varies according to the size of data. We apply the k-mean on each block
independently, to produce k centers for each block, so if the dataset partitioned into m blocks, then
the compressed data will contains m*k objects. Each block is small compared with the full dataset.
Also the compressed data is very small regards to the full dataset. We apply the k-means on the
compressed data to produce k centroids. We take the resulting k centroids to be the initial starting
points for the k-means algorithm that works on the full dataset. In this case the number of iteration
will be decreased, and a better means will be founded. Our algorithm regards the effect of each
point on the means, and does not restrict the effect of the sample like in [1]. Our algorithm scan the
data two times; at the first phase to compress the dataset, the second time when distribute the full
dataset points over the initial centroids produced from the compressed dataset. When we look at
each block, we may find that the block represents a sample of dataset, if the block contains objects
distributed over all the space, so the k representative means for this block will be lie near to the final
means of the full dataset. On the other side, if the block contains objects that fall in a small portion
of the space, then the k representatives for this block will be very close to each other and some of
them will be merged together when applying the k-means on the compressed dataset. Figure 1
explains our idea, the dataset contains five clusters, and we partition the dataset into two blocks.
Figure 1.a represents the dataset, Fig.1.b and 1.c represent two probability for the data in each
block; in Fig.1.b the block represents a sample of points distributed over all the data space, while in
Fig.1.c the block represents an area of the data space.

 a) Dataset b) Two blocks of the data c) Two blocks of the data

Fig. 1: Dataset contains 5 clusters, the 2 blocks of the data may be like as in b or c

When we apply the k-means on the two blocks represented by Fig 1.b and 1.c we will obtain
the result shown in Figure 2

 a) Result from Fig. 1.b b) Result from Fig. 1.c

 The k means of white block (white circles), the k means of green block (green circles)

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2009|No.2(19)

 51

Fig. 2: The compressed dataset generated from 2 blocks of data

Fig. 3 the final 5 clusters

At this point we obtain the compressed dataset that contains m*k (k representative points for
each block) means resulting from the m blocks. We apply the k-means algorithm on this
compressed dataset to find the final k means. This final k means will be the initial starting points for
applying the k-means algorithm over the full dataset. Returns to our example, the final k means for
the compressed dataset will be nearly the same for the two probabilities of the blocks in Fig. 1. And
the final result of our algorithm will be as in Figure 3.

Fig. 4.a: An overview of the k-means block

 Fig. 4.b: The main steps of the proposed algorithm.

 Fig. 4: The K-means block algorithm

1. Set the size of the block
2. i=0
3. While not end of file
4. Read the Blocki
5. k-means(Blocki, k)
6. (Write/Append) the means to output file
7. i=i+1
8. End while
9. k-means(compressed dataset, k)
10. k-means(dataset, final means, k)

Dataset M Blocks M solution
Compressed dataset
contains M solution

-
-
-

-
-
-

Initial K starting points
for the second phase

K-means
algorithm

K-means
algorithm

Apply k-means
algorithm on
dataset with
the initial k
starting points

The final clusters

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2009|No.2(19)

 52

From the previous Figures (1 to 3) we note that; when the block represents a sample

distributed over all the data space, the generated means will be very condensed on specified areas as
in Fig 2.a. But when the block represents a sample distributed over certain area of the data space,
the generated means will be scattered over the data space, but we find that these means scattered
over groups as in Fig.2.b. Figure 4 summarizes the steps of the k-means block algorithm.

Note that, in figure 4.b, the algorithm determines the size of each block and the user should
determine the required number of partitions in each block. The value of k may be changed when
applying the k-means on the compressed and the full dataset. From experimental results it will be
better when we use small value for k at the first phase of our algorithm, at the second phase we
change the value of k to the required number of clusters as a final results. So the value of k in steps
9, 10 may be different from the value of k in step 5. In line 10, the k-means start with the k points
generated from the compressed dataset in line 9 and applied on the full dataset.

3.3 Computational Complexity
The k-means block algorithm is primarily intended to work on large datasets. Since our

method works on small blocks of the data, the initialization of good starting points is fast. We use
block sizes of 10% of the full dataset size, so to get the compressed dataset it will require O(mbkl);
m is the number of blocks, b is the size of block, k is the number of clusters and l is the number of
iterations. At the worst case this time will be equals to the time required by the k-means to cluster
the full dataset. The time required to get the final k means from the compressed dataset is
negligible, since the compressed dataset is very small compared with the full dataset. At the final
phase we apply the k-means over the full dataset starting with the final k means resulting from the
compressed dataset, this lead to a few number of iteration of the k-means. The time complexity of
the second phase is O(nk), where n is the size of the full dataset, and k is the number of clusters. So
the overall time complexity will be O(nk + mbkl). At the worst case this time will be the running
time of the k-means two times.

4. Experimental Results
We have evaluated our proposed algorithm on both synthetic and real datasets. We compared

our results with that of the original k-means algorithm in terms of the total quality of clusters and
the execution time for both algorithms. We give a brief description of the datasets used in our
algorithm evaluation. Table 1 shows some characteristics of these datasets.

 Table 1: Characteristic of the Datasets

Dataset Number of

Records
Number of
Attributes

Type of
dataset

Db1 3159 2 Synthetic
Letters 20000 16 real
Iris 150 4 real
Abalone 4177 8 real

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2009|No.2(19)

 53

161.203

65.21

1.942

112.765

5.221 8.913

139.315

7.5821.942

64.267

112.718

159.659
135.778

4.776

0

20

40

60

80

100

120

140

160

180

Db1 k=3 letters
k=26

letters
k=30

letters
k=20

letters
k=10

Iris k=3 Abalone
k=29

MSE(k-means
MSE(k-means block)

Table 2: The results of the proposed algorithm compared with that of k-means

k-means k-means block dataset k MSE iterations Time in sec. MSE iterations Time in sec.
Db1 3 5.221 13 < 1 4.776 2 < 1
letters 26 139.315 18 18 135.778 11 27
letters 30 161.203 45 51 159.659 14 36
letters 20 112.765 23 18 112.718 13 21
letters 10 65.210 8 3 64.267 5 7
Iris 3 1.942 4 < 1 1.942 4 < 1
Abalone 29 8.913 4 < 1 7.582 4 2

Note that: The value of k in table 2 is fixed for the two phase of the algorithm.

From the results in table 2 and in figures from 5 to 8, we find that our proposed algorithm
produces better results than that of the k-means algorithm; our proposed algorithm is designed for
large datasets. And it produces better result as the dataset contains large number of clusters. In this
case the run time of the proposed algorithm will be smaller than that of the k-means. And we can
decrease the running time by inserting small value for k when applying the k-means on the blocks
provided that the compressed dataset contains number of points larger than the final number of
clusters in the full dataset. For example, when we partition the letters dataset into 30 clusters, we
partition each block into 10 clusters, the compressed dataset contains 100 representative objects,
and then we partitioned this dataset into 30 clusters to get the initial starting points for the k-means
in the next phase. The MSE is 156.397171, the iteration is 22, and the running time is 30 second as
shown in Figure 8. And this result is better than that exist in table 2. This occurs because the final
result will depends on the size of the block, number of clusters, this number may be constant along
the run time of the algorithm, and we can make it varies on the compressed dataset. When the
dataset contains large number of clusters (>40) it is better to partition each block to small number
of clusters, provided that the resulting compressed dataset contains sufficient number of points(>
the number of clusters in the full dataset).

Fig. 5: mean square error comparison between k-means and k-means block

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2009|No.2(19)

 54

1

18

51

18

3 1 11

27

36

21

7
1 2

0

10

20

30

40

50

60

Db1 k=3 letters
k=26

letters
k=30

letters
k=20

letters
k=10

Iris k=3 Abalone
k=29

time(k-means)
time(k-means block)

161.203

45 51

156.397171

22 30

0

20
40

60

80
100

120

140
160

180

MSE iteration time MSE iteration time

k-means k-means block

13
18

45

2

11
14

0
5

10
15
20
25
30
35
40
45
50

Db1 k=3 letters
k=26

letters
k=30

23

8
4 4

13

5 4 4

letters
k=20

letters
k=10

Iris k=3 Abalone
k=29

iteration(k-means)
iteration(k-means block)

Fig. 6: Iteration comparison between k-means and k-means block

Fig. 7: Run time comparison between k-means and k-means block

Fig. 8: Great improvement in run time, iteration and MSE, when each block is portioned into small number of clusters,
producing the required number of clusters at the final phase.

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2009|No.2(19)

 55

Table 3: The results of the proposed algorithm compared with that of k-means
On letters data set with small value for k at the first phase and large value for k at the second phase

k-means k-means block K 1st

Phase
K 2nd
phase MSE iterations Time in

sec.
MSE iterations Time in

sec.
10 30 161.203 45 51 156.397 22 30
20 60 277.430 30 69 269.835 12 38
10 90 387.869 18 62 372.735 16 59

From our experimental results in table 3, we recommend to use small value for k when we

apply the k-means on the blocks. And the actual value for k when applying the k-means on the
compressed dataset and the full dataset. These results are shown in Figures 8, 9, and 10. We use the
letters dataset since it is the largest dataset we have, it contains 20000 points in 16 dimensions.

Fig. 9: Great improvement in iteration and MSE, when each block is portioned into 20 clusters, producing
60 clusters at the final phase.

277.43

30

69

269.835

12

38

0

50

100

150

200

250

300

MSE iteration time MSE iteration time
k-means k-means block

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2009|No.2(19)

 56

Fig. 10: Great improvement MSE, when each block is portioned into 10 clusters, producing 90 clusters at
the final phase.

So our proposed algorithm is suitable for large datasets, and it perform well when the dataset
contains large number of clusters, and this proves that the good initial starting points lead to a better
clustering solution.

5. Conclusion

In this paper we have presented a simple idea that make the k-means more efficient and
produce good quality clusters. Our idea depends on the good selection of the starting points for the
k-means. To select a good initial solution we partition the dataset into blocks, and applied the k-
means on each block, we get a compressed dataset, we apply the k-mean on it with the same value
of k or larger to get good starting means, and redistributes the points in the full dataset over these
starting means. Our experimental results demonstrated that the proposed algorithm produces better
results than that of the k-means algorithm.

387.869

18

62

372.735

16

59

0

50

100

150

200

250

300

350

400

450

MSE iteration time MSE iteration time

k-means k-means block

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2009|No.2(19)

 57

References
[1] Bradley P. S., Fayyad U. M. “Refining Initial Points for K-Means Clustering”, Proc. of the

15th International Conference on Machine Learning (ICML98), J. Shavlik (ed.), Morgan
Kaufmann, San Francisco, 1998, pp. 91-99.

[2] Duda, R.O., Hart, P.E., “Pattern Classification and Scene Analysis”. John Wiley & Sons, New
York, 1973.

[3] Fahim A. M., Salem A. M., Torkey F. A. and Ramadan M. “An efficient enhanced k-means
clustering algorithm”. Journal of Zhejiang University Science A, 2006, vol 7(10), pp. 1626-
1633.

[4] Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy,R., “Advances in Knowledge
Discovery and Data Mining”. AAAI/MIT Press, 1996.

[5] Gersho, A., Gray, R.M., 1992. “Vector Quantization and Signal Compression”. Kluwer
Academic, Boston.

[6] Hung M., WU J., Chang J. and Yang D.,“An Efficient k-Means Clustering Algorithm Using
Simple Partitioning”, journal of Information Science and Engineering, 2005, vol. 21, pp.
1157-1177.

[7] Z. Huang, “Extensions to the k-means algorithm for clustering large data sets with categorical
values,” Data Mining and Knowledge Discovery, 1998, vol. 2, , pp. 283-304.

[8] Jain, A.K., Dubes, R.C., “Algorithms for Clustering Data”. Prentice-Hall Inc., 1988.

[9] Ng R. T., Han J.: “Efficient and Effective Clustering Methods for Spatial Data Mining”, Proc.
20th Int. Conf. On Very Large Data Bases, Santiago, Chile, Morgan Kaufmann Publishers, San
Francisco, CA, 1994, pp. 144-155.

[10] Pham D. T., Dimov S. S., and Nguyen C. D., “Selection of k in K-means clustering”.
Mechanical Engineering Science, 2004, vol. 219. pp.103-119.

[11] Ray S. and Turi R. H., "Determination of number of clusters in k-means clustering and
application in colour image segmentation.", in Proceedings of the 4th International Conference
on Advances in Pattern Recognition and Digital Techniques, 1999, pp. 137-143,.

[12] Zhang T., Ramakrishnan R., Linvy M.: “BIRCH: An Efficient Data Clustering Method for
Very Large Databases”. Proc. ACM SIGMOD Int. Conf. on Management of Data, ACM
Press, New York, 1996, pp.103-114.

This article contains

10 Figures

3 Tables

Article received: 2008-06-02

