
Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2009|No.3(20)

 150

Queuing Theoretic Model for a Multiprocessor With Private Caches and Shared

Memory

Angel V. Nikolov
Department of Mathematics and Computer Science, National University of Lesotho, angel_nikolov10@yahoo.com

Abstract

We develop an analytical model of multiprocessor with private caches and shared
memory and obtain the steady-state probabilities of the system. Behaviour in
equilibrium can be studied and analyzed. We show that results can be applied to
determine the output parameters for both blocking and non-blocking caches.

Keywords: Invalidate cache-coherence protocol, queuing system, discrete transform

Introduction
Shared memory multiprocessors are widely used as platforms for technical and commercial

computing [2]. Performance evaluation is a key technology for design in computer architecture. The
continuous growth in complexity of systems is making this task increasingly complex [7]. In
general, the problem of developing effective performance evaluation techniques can be stated as
finding the best trade-off between accuracy and speed.

The most common approach to estimate the performance of a superscalar multiprocessor is

through building a software model and simulating the execution of a set of benchmarks. Since
processors are synchronous machines, however, simulators usually work at cycle-level and this
leads to enormous slowdown [9]. It might take hours even days to simulate.

For memory structures relatively accurate analytical models are developed [3, 7, 8, 9] through

extensive use of various queuing systems. Open queue system with Poisson arrivals and exponential
service times is considered quite good for description of memory hierarchies [7]. Our focus is on
the impact of the cache-coherence protocols on the overall system performance. The most
commonly used technique for this purpose is the Mean Value Analysis (MVA) [3, 5, 7, 8, 9]. It
allows the total number of the customers to be fixed (closed queue system), and this seems to be
more adequate representation of the processes of self-blocking requestors [5]. Calculations of
output parameters such as residency times, waiting times and utilization are shown in [3, 8, 9].
MVA suggests exponential service times but in fact both bus cycle times and memory access times
are close to constants. It will be seen later in this paper that state probabilities depend on the
server’s time density function.

We assume general distribution of the service times and introduce the supplementary variable

x, elapsed service time, to describe the behaviour of the multiprocessor implementing cache-
coherence protocols. A system of differential equations is set and solved and the steady-state
probabilities are obtained.

2. Definition and Analysis of the Model
A multiprocessor consists of several processors connected together to a shared main memory

by a common complete transaction bus. Each processor has a private cache. When a processor
issues a request to its cache, the cache controller examines the state of the cache and takes suitable
action, which may include generating bus transaction to access main memory. Coherence is
maintained by having all cache controllers “snoop” on the bus and monitor the transaction. Snoopy
cache-coherence protocols fall in two major categories: Invalidate and Update [2, 3, 9]. Invalidating
protocols are studied here but the concepts can be applied with some modifications to updating

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2009|No.3(20)

 151

protocols too. Transactions may or may not include the memory block and the shared bus. Typical
transaction that does not include memory block is Invalidate Cache Copy which occurs when a
processor requests writing in the cache. All other processors simply change the status bit(s) of their
on copies to Invalid. If the memory block is uncached or not clean it can be uploaded from the main
memory, but in today’s multiprocessors it is rather uploaded from another cache designated as
Owner (O) (cache-to cache transfer). Memory-to-cache transfer occurs when the only clean copy is
in the main memory. A cache block is written back (WB) in the main memory (bus is used) when a
dirty copy is evicted [6]. The evicted block is maintained in the write-back buffer until the block is
written back. The responsibility of handling the WB transaction rests solely with the processor’s
cache controller and thus the processor can resume processing immediately after completion of its
blocking request. Apparently the bus can be considered as the bottleneck of the system.

We shall refer to the processors as customers and to the bus as server.

Inter-arrival times are exponentially distributed with parameter λ. This assumption is adequate

for most applications [7]. The number of the processors is N. Requests are served on First Come
First Served (FCFS) basis. Immediately after issuing a request for cache-to-cache transfer or
synchronization procedure the customer blocks itself. Service time for blocking request has a
density function fb(x). When service is completed the processor resumes processing with probability
p or resumes processing and generates a new WB request with probability q (p+q=1). The new
request joins the queue at its tail or is taken immediately into service if there is no queue at the
server. Details on how to obtain the input parameters are given in [2, 3, 8, 9]. This new request has
a different density function fw(x) and corresponds to WB transaction. It does not block the customer
but the server is held until completion of WB transaction therefore adding to the queue. System’s
states can be described by two components:1) number of customers doing internal processing, and
2) ordering zr of blocking(b) and WB(w) requests (waiting and in service) at the server. Transitions
between these states are illustrated in Fig. 1.

Each processor at any moment can have one blocking and one write-back request at the

server, so that the maximum length of zr is 2N.
 Throughout this paper we use the following notations
b blocking request
w write-back request

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2009|No.3(20)

 152

zr ordering of b’s and w’s
Z {zr} set of all orderings at the server
LM(zr) leftmost character of the ordering zr
RM(zr) rightmost character of the ordering zr
yk ordering in which the LM(yk)=w; parent state (node)

rzchar +± (char=b,w) ordering originating from zr by adding/removing the RM(zr);
example: zr=wbbbw, -w+zr=bbbw,w+zr=wwbbbw

charzr ± (char=b,w) ordering originating from zr by adding/removing the LM(zr); example:
zr=wbbbw, zr-wr=wbbb,zr+w=wbbbww

Y {yk}, Y⊂Z subset of the parent states; Although the leftmost character of the state N-

1,b is not w we refer to it as a parent state
j,zr system’s state (node), where j is the number of customers doing internal processing
PN P[in equilibrium all N customers are doing internal processing]

)(, xP
rzj P[in the equilibrium state j customers are doing internal processing, N-j are in

the queue and/or in the server, the ordering of b and w requests is zr, and the elapsed service time
lies between x and x+dx].

PN
∞→t
N tP)(lim

rzjP , steady-state probabilities ∫
∞

0

,)(dxxP rzj

βj jλ; j=1≤j≤N
Fsrv(x) c.d.f. of the service time of type srv ; srv=b,w
fsvr(x) density function of the service time of type

srvμ
1 ∫

∞

0

)(dxxxfsrv

hsrv(x)
)(1

)(
xF

xf
srv

srv

−
 service rate for type srv

)(sfsrv Laplace transform of fsrv(x)
* multiplication sign

The algorithm below generates the states of the system:

Number_nonblocked_customers(first_parent)=N;
Seq(first_parent)=Ø;
Add first-Parent to New_Parent_Nodes;
Do while New_Parent _Nodes=Ø{
Parent_Nodes=New_Parent_Nodes;
New_Parent_Nodes=Ø;

NodesParentNodeParent __ ∈∀
{Generate_all_children(parent_node}
 andNodesParentnodeparent __ ∈∀ ∀ its children
{Generate_Parent (parent_node)}
}
Generate_Child(node,i){
Number_nonblocked_customers(child)=Number_nonblocked_customers(node)-i;
Seq(child)=(Number_nonblocked_customers(node)-i)*b+seq(node);
Add child to Nodes}

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2009|No.3(20)

 153

Generate_all_children(node){
For i=Number_nonblocked_customers ,0
Generate_child(node,i);
Endfor}

Generate_parent(node){
If RM(seq(node))=b then
 Number_nonblocked_customers(new_parent)=

 Number_nonblocked_customers(node)+1;
 Seq(new_parent)=w+seq(node)-LM(seq(node));
Add new_parent to New_Parent_Nodes;
Endif}

In each step a subset of parent nodes is created according to the transition

, then the child nodes of each parent nodes are added to Z. Nodes
with w as a rightmost character in the ordering do not generate parent nodes. The number of
rightmost b’s in the generating ordering is decremented by one, so that the node will be

exhausted in l steps. Since the node of the first subset has the largest number of such b’s,

N step will be needed to exhaust it. So the algorithm produces all states (nodes) in N+1 steps.

k
xqh

k ymbywm b ,,1)(⎯⎯ →⎯++−−

{
placesl

bbm
_

...,...

{
placesN

bb
_
...,0

We will prove that the algorithm produces all possible system’s states. First we use induction

to show that all ph1(x) transactions in a given subset occur between states in this subset. Let m,zz
and m-1,zr+b be two states in the ith subset (1≤i≤N-1). Obviously . If
RM(zr)=b both states generate parent nodes in the (i+1)st subset and there is a ph1(x) transaction
between them: . A ph1(x) transaction also exists between their
child states

r
xph

r zmbzm b ,,1)(⎯⎯ →⎯+−

bzwmzwm r
xph

r
b −+⎯⎯ →⎯+− ,,1)(

bzwbm r −+j +− *)1 mj(, and rzwb ++− *)1(, .
Since in the last subset RM(zr)=w for all states no ph1(x) transitions exist.

Let’s denote two arbitrary states in the ith subset ,za and j+l,zc (0≤i≤N+1, 0≤j≤N, 0≤l≤N,

 and) and an arbitrary state in the (i+1)st subset by j,zd (). The
following relations can be proven by induction on i

iZ
iaz Z∈ icz Z∈ 1+iZ 1+∈ idz Z

Length(za)-length(zc)=l (1)

and
Length(zd)-length(za)=1. (2)

Proof: Transitions and

 generate two parent states for which
apparently (1) and (2) hold. Proof for the child states is straightforward.

a
xqh

a
j

a zbwjzbjbzj b ++⎯⎯ →⎯+−⎯→⎯+ ,,1,)(λ

c
xqh zbwljb +++⎯⎯ →⎯ ,)(

c
lj

c zbljbzlj +−+⎯⎯ →⎯++ + ,1,)(λ

We can conclude now that transitions of type hw (x) occur from nodes in the (i+1)st subset to

nodes in the ith subset.
Viewing the nature of the system, we obtain the following set of differential equations

βNPN=p + (3) ∫
∞

−
0

,1)()(dxxhxP bbN ∫
∞

0
,)()(dxxhxP wwN

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2009|No.3(20)

 154

⎥⎦
⎤

⎢⎣
⎡ ++)(xh

dx
d

srvmβ)(, xP kym =0 (4)

⎥⎦
⎤

⎢⎣
⎡ ++)(xh

dx
d

srvjβ)(*)(, xP
kybjmj +− = βj+1 (5))(*)1(,1 xP

kybjmj +−−+

⎥⎦
⎤

⎢⎣
⎡ +)(xh

dx
d

srv)(*,0 xP
kybm + =β1 (6))(*)1(,1 xP

kybm +−

having the following boundary and normalizing conditions

PN-1,b(0)=p + + βNPN (7) ∫
∞

−
0

,2)()(dxxhxP bbbN ∫
∞

−
0

,1)()(dxxhxP wbwN

)0(, kymP =q + (8) ∫
∞

++−−
0

,1)()(dxxhxP bk bywm ∫
∞

+
0

,)()(dxxhxP wk wym

for the ith subset (2≤i≤N),1≤m≤N, and no phb(x) transition to m,yk

)0(, kymP =q + (9) ∫
∞

++−−
0

,1)()(dxxhxP bk bywm ∫
∞

+
0

,)()(dxxhxP wk wym

 + p ∫
∞

+−
0

,1)()(dxxhxP bk bym

For 2≤i≤N,1≤m≤N, and phb(x) transition to m,yk

)0(, kymP =q for the last (N+1)st subset . (10) ∫
∞

++−−
0

,1)()(dxxhxP bk bywm

)0(*)(, kybjmjP +− = for 0≤j≤m (11) ∫
∞

++−
0

*)(,)()(dxxhxP wk wybjmj

for the ith subset (2≤i≤N),1≤m≤N, and no phb(x) transition to j,(m-j)*b+yk .

)0(*)(, kybjmjP +− = p + (12) ∫
∞

++−−
0

*)(,1)()(dxxhxP bk bybjmj ∫
∞

++−
0

*)(,)()(dxxhxP wk wybjmj

for the ith subset (2≤i≤N),1≤m≤N, and phb(x) transition to j,(m-j)*b+yk.

)0(*,0 kybmP + = for 1≤i≤N (13) ∫
∞

++
0

*,0)()(dxxhxP wk wybm

)0(*)(, kybjmjP +− =0 for 0≤j<m for the last (N+1)st subset (14)

∑
∈

=+
Zrz

rzjN PP 1, (15)

By using discrete transform [4] the equations (4-5) are transformed as follows

⎥⎦
⎤

⎢⎣
⎡ ++)(xh

dx
d

srvjβ)(*)(, xu
kybjmj +− = 0 for 1≤j≤m (16)

where

)()1()(*)(,*)(, xP
j
n

xu
kk ybnmn

m

jn

jn
ybjmj +−

=

−
+− ∑ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= , and

)()1()(*)(,*)(, xu
j
n

xP
kk ybnmn

m

jn

jn
ybjmj +−

=

−
+− ∑ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2009|No.3(20)

 155

Let
)(1

)(
)(

*)(,
*)(, xF

xu
xv

srv

ybjmj
ybjmj

k

k −
=

+−
+− and

)(1

)(
)(

*,0'
*,0 xF

xP
xP

srv

kybm

kybm −
=

+

+

Then from (16) and (6) we have after some manipulations

⎥⎦
⎤

⎢⎣
⎡ + jdx

d β =0 (17))(*)(, xv
kybjmj +−

⎥⎦
⎤

⎢⎣
⎡

dx
d)('

*,0 xP
kybm + = . (18))('

*)1(,11 xP
kybm +−β

Hence solutions of (17-18) are

x
ybjmjsrvybjmj

j

kk
euxFxu β−

+−+− −=)0()](1[)(*)(,*)(, for 1≤j≤m (19)

)0()](1[)0(1
1)](1[)(*,0

1

1
1*,0)*(,)(

kkybnmnk ybmsrv
n

nnm

n
srvybm PxFu

xenxFxP +

−−

=
+ −+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−= +−−∑ β

β
β

 (20)
By integrating (19-20), and from (3) we obtain the steady-state probabilities

)0(
)(1

)1(*)(,
1

1
*, kk ybnmn

n

nsrvm

n

n
ybmj u

f
j
n

P +−
=

−
+

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑ β

β

(21)

srv

ybm
ybnmn

n

nsrv

srvn

m

n

n
ybm

k

kk

P
u

f
nP

μβ

β

μβ
β)0(

)0(
)(11)1(

'
*,0

*)(,
1

1

1
*,0

+
+−

=

−
+ +⎥

⎦

⎤
⎢
⎣

⎡ −
+−= ∑ (22)

N

NwwNNbbN
N

fufpu
P

β

ββ)()0()()0(,1,1 +
= −− (23)

From (7-13) we get after some algebra the following linear equations

NPfu
N
n

fu
N
n

pu

Nnw

N

Nn
wbnNn

Nn

nbbnNn

N

Nn

Nn
bN

ββ

β

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−=

∑

∑

−=
+−

+−

−

−

−=

+−
−

)()0(
1

)1(

)()0(
2

)1()0(

1
*)(,

1

*)(,

1

2

2
,1

 (24)

where yr=-w+yk+b.

)()0(
1

)1(

)()0()()0(
1

)1()0(

*)(,
1

1

,
1

*)(,
1

,

bbbybnmn

m

mn

mn

mwwymnb

l

mn
ybnln

mn
ym

fu
m
n

p

fufu
m
n

qu

k

krk

β

ββ

++−
−=

+−

+
−=

+−
+−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−+

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−=

∑

∑
 (25)

where yr=-w+yk+b, for the ith subset (2≤i≤N), 2≤m≤N, and phb(x) transition to m,yk

)()0()()0(
1

)1()0(,
1

*)(,
1

, mwwymnb

l

mn
ybnln

mn
ym fufu

m
n

qu
krk

ββ +
−=

+−
+− +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−= ∑ (26)

 for the ith subset (2≤i≤N),2≤m≤N, and no phb(x) transition to m,yk .

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2009|No.3(20)

 156

)()0()0()0(
)(1

)1()0(1,1
'

*,0
1

*)(,
1

1,1 β
β

β
β wwyybl

l

n
ybnln

n

nbn
y fuqPu

f
nqu

krrk ++
=

+−
− ++

−
−= ∑ (27)

for 2≤i≤N.
For the last subset we have

)()0(
1

)1()0(
1

*)(,
1

, nb

l

mn
ybnln

jn
ym fu

j
n

qu
rk

β∑
−=

+−
+−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−= for 2≤m≤N (28)

∑
=

+−
− −

−=
l

n
ybnln

n

nbn
y rk

u
f

nqu
1

*)(,
1

1,1)0(
)(1

)1()0(
β

β
β + (29))0('

*,0 ryblqP +

∑

∑∑

=
++−

−

−=
++−

+−
+−

=

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

m

jn
nwwybnmn

n

nb

m

jn
bybnmn

jn
ybnmn

m

jn

jn

fu
j
n

fu
j
n

pu
j
n

k

kk

)()0()1(

)()0(
1

)1()0()1(

*)(,
1

1
*)(,

1
*)(,

β

β

(30)
 for the ith subset (1≤i≤N), 2≤j≤m, and phb(x) transition to j,(m-j)*b+yk .

∑∑
=

++−
−

+−
=

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

m

jn
nwwybnmn

n
ybnmn

m

jn

jn
fu

j
n

u
j
n

kk
)()0()1()0()1(*)(,

1
*)(, β

(31)

for the ith subset (1≤i≤N), 2≤j≤m, and no phb(x) transition to j,(m-j)*b+yk .

∑

∑∑

=
++−

−

++−
=

++−
−

+−
=

−

−+

+
−

−=−

m

n
nwwybnmn

n

bybm

m

n
bybnmn

n

nn
ybnmn

m

n

n

fnu

pPu
f

npun

k

kkk

1
*)(,

1

'
*)1(

1
*)(,

11
1*)(,

1

1

)()0()1(

)0()0(
)(1

)1()0()1(

β

β

β
β

(32)
for the ith subset (1≤i≤N), and phb(x) transition to 1,(m-1)*b+yk .

∑∑
=

++−
−

+−
=

− −=−
m

n
nwwybnmn

n
ybnmn

m

n

n fnuun
kk

1
*)(,

1
*)(,

1

1)()0()1()0()1(β (33)

for the ith subset (1≤i≤N), and no phb(x) transition to 1,(m-1)*b+yk .

)0()0(
)(1

)1()0('
,0)(,

1

1
1

'
*,0 wybmybnmn

n

nwm

n

n
ybm kkk

Pu
f

nP +++−
=

−
+ +

−
−= ∑ β

β
β for 1≤i≤N (34)

From (`4) by induction and using the relation we obtain 0)1(
0

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∑

=

j

n

n

n
j

kk ymybjmj u
j
m

u ,*)(, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=+− for i=N+1,1≤j<m (35)

Coefficients can be determined from (15) and (24-35).)0(, rzju

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2009|No.3(20)

 157

Various performance characteristics can be computed using the state probabilities. For
example, the average number of waiting (blocked) customers (ANBC) in the case of blocking
caches will be given by

ANBC= ∑
∈

−
Zr

r
z

zjPjN ,)(

 In the case of non-blocking caches ANBC will be
ANBC= ∑ ∑

=
∈

≠
∈

−++−−

bzRM
z

bzRM
z

zjzj

r
r

r
r

tr
PjNPkjN

)()(

,,)()1(
Z Z

where k is the ratio of average memory stall time [2] . k depends strongly on the application.
(1-k) actually refers to the fraction time the processor is consuming data while cache-to-cache or
memory-to cache transfer is in progress.

Conclusion

This paper presented a model for a shared memory, shared bus multiprocessor maintaining

Invalidate type cache coherence protocol. We obtained the steady-state probabilities of the system
so that the behaviour in equilibrium can be studied and analyzed.

We showed that results can be applied to determine the output parameters for both blocking
and non-blocking caches.

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2009|No.3(20)

 158

References
1. S. K. Bose, Introduction to Queuing Systems, Kluwer/Plenum Publishers, 2001
2. J. L. Hennessy, D. A. Patterson; Computer Architecture: A Quantitative Approach, Pearson

Publishers, 2003
3. M. C. Chiang, Memory System Design For Bus Based Multiprocessor, PhD Thesis, University of

Wisconsin, 1991
4. T. Itoi, T. Nishida, M. Kodama and E. Ohi, N-unit parallel redundant system with correlated

failures and single repair facility, Microelectronics and Reliability, vol. 17, pp. 279-285, 1978
5. E. Lazowska, J. Zahorjan, G. Graham, and K. Sevcik, Quantitative System Performance,

Computer System Analysis Using Queuing Network Models, Prentice-Hall, Englewood Cli_s,
NJ, May 1984.

6. A. Louri, A.K. Kodi, An optical interconnection network and a modifying snooping protocol for
the design of large-scale symmetric multiprocessors (SMPs), IEEE Transactions on Parallel
and Distributing Systems, vol. 15, No. 12, Dec. 2004, pp. 1093-1104

7. R. E. Matick, Comparison of analytic performance models using closed mean-value analysis
versus open-queuing theory for estimating cycles per instruction of memory hierarchies, IBM
Journal of Research and Development, Jul 2003

8. D. J. Sorin et. al., A customized MVA model for ILP multiprocessors, Technical report #1369,
University of Wisconsin-Madison, 1998

9. D. J. Sorin et. al., Evaluation of shared-memory parallel system with ILP processors , Proc. 25th
Int’l Symp. On Computer Architecture, June 1998, pp. 180-191

10. J. Sustersic, A. Hurson, Coherence protocol for bus-based and scalable multiprocessors,
Internet and wireless distributed computing environments: a survey , Advances in Computers,
vol.59,2003 pp. 211-278.

 __
Article received: 2008-06-27

