
Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2009|No.3(20) 
 

    150

 
Queuing Theoretic Model for a Multiprocessor With Private Caches and Shared 

Memory 
 

Angel V. Nikolov 
Department of Mathematics and Computer Science, National University of Lesotho, angel_nikolov10@yahoo.com 

 
Abstract 

We develop an analytical model of multiprocessor with private caches and shared 
memory and obtain the steady-state probabilities of the system. Behaviour in 
equilibrium can be studied and analyzed. We show that results can be applied to 
determine the output parameters for both blocking and non-blocking caches. 
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Introduction 
Shared memory multiprocessors are widely used as platforms for technical and commercial 

computing [2]. Performance evaluation is a key technology for design in computer architecture. The 
continuous growth in complexity of systems is making this task increasingly complex [7]. In 
general, the problem of developing effective performance evaluation techniques can be stated as 
finding the best trade-off between accuracy and speed. 

 
The most common approach to estimate the performance of a superscalar multiprocessor is 

through building a software model and simulating the execution of a set of benchmarks. Since 
processors are synchronous machines, however, simulators usually work at cycle-level and this 
leads to enormous slowdown [9]. It might take hours even days to simulate. 

 
For memory structures relatively accurate analytical models are developed [3, 7, 8, 9] through 

extensive use of various queuing systems. Open queue system with Poisson arrivals and exponential 
service times is considered quite good for description of memory hierarchies [7]. Our focus is on 
the impact of the cache-coherence protocols on the overall system performance. The most 
commonly used technique for this purpose is the Mean Value Analysis (MVA) [3, 5, 7, 8, 9]. It 
allows the total number of the customers to be fixed (closed queue system), and this seems to be 
more adequate representation of the processes of self-blocking requestors [5].  Calculations of 
output parameters such as residency times, waiting times and utilization are shown in [3, 8, 9]. 
MVA suggests exponential service times but in fact both bus cycle times and memory access times 
are close to constants. It will be seen later in this paper that state probabilities depend on the 
server’s time density function.  

 
We assume general distribution of the service times and introduce the supplementary variable 

x, elapsed service time, to describe the behaviour of the multiprocessor implementing cache-
coherence protocols. A system of differential equations is set and solved and the steady-state 
probabilities are obtained. 

 
2. Definition and Analysis of the Model 
A multiprocessor consists of several processors connected together to a shared main memory 

by a common complete transaction bus. Each processor has a private cache. When a processor 
issues a request to its cache, the cache controller examines the state of the cache and takes suitable 
action, which may include generating bus transaction to access main memory. Coherence is 
maintained by having all cache controllers “snoop” on the bus and monitor the transaction. Snoopy 
cache-coherence protocols fall in two major categories: Invalidate and Update [2, 3, 9]. Invalidating 
protocols are studied here but the concepts can be applied with some modifications to updating 
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protocols too. Transactions may or may not include the memory block and the shared bus. Typical 
transaction that does not include memory block is Invalidate Cache Copy which occurs when a 
processor requests writing in the cache. All other processors simply change the status bit(s) of their 
on copies to Invalid. If the memory block is uncached or not clean it can be uploaded from the main 
memory, but in today’s multiprocessors it is rather uploaded from another cache designated as 
Owner (O) (cache-to cache transfer). Memory-to-cache transfer occurs when the only clean copy is 
in the main memory. A cache block is written back (WB) in the main memory (bus is used) when a 
dirty copy is evicted [6]. The evicted block is maintained in the write-back buffer until the block is 
written back. The responsibility of handling the WB transaction rests solely with the processor’s 
cache controller and thus the processor can resume processing immediately after completion of its 
blocking request. Apparently the bus can be considered as the bottleneck of the system.  

 
We shall refer to the processors as customers and to the bus as server. 
 
Inter-arrival times are exponentially distributed with parameter λ. This assumption is adequate 

for most applications [7]. The number of the processors is N. Requests are served on First Come 
First Served (FCFS) basis. Immediately after issuing a request for cache-to-cache transfer or 
synchronization procedure the customer blocks itself. Service time for blocking request has a 
density function fb(x). When service is completed the processor resumes processing with probability 
p or resumes processing and generates a new WB request with probability q (p+q=1). The new 
request joins the queue at its tail or is taken immediately into service if there is no queue at the 
server. Details on how to obtain the input parameters are given in [2, 3, 8, 9]. This new request has 
a different density function fw(x) and corresponds to WB transaction. It does not block the customer 
but the server is held until completion of WB transaction therefore adding to the queue. System’s 
states can be described by two components:1) number of customers doing internal processing, and 
2) ordering zr of blocking(b) and WB(w) requests (waiting and in service) at the server. Transitions 
between these states are illustrated in Fig. 1. 

 
Each processor at any moment can have one blocking and one write-back request at the 

server, so that the maximum length of zr is 2N. 
 Throughout this paper we use the following notations 
b  blocking request 
w write-back request 
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zr ordering of b’s and w’s 
Z {zr} set of all orderings at the server 
LM(zr) leftmost character of the ordering zr 
RM(zr) rightmost character of the ordering zr 
yk ordering in which the LM(yk)=w; parent state (node) 

rzchar +± (char=b,w)  ordering originating from zr by adding/removing the RM(zr); 
example: zr=wbbbw, -w+zr=bbbw,w+zr=wwbbbw 

charzr ± (char=b,w)  ordering originating from zr by adding/removing the LM(zr); example: 
zr=wbbbw, zr-wr=wbbb,zr+w=wbbbww 

 
Y {yk}, Y⊂Z subset of the parent states; Although the leftmost character of the state N-

1,b is not w we refer to it as a parent state 
j,zr system’s state (node), where j is the number of customers doing internal processing 
PN  P[in equilibrium all N customers are doing internal processing] 

)(, xP
rzj   P[in the equilibrium state j customers are doing internal processing, N-j are in 

the queue and/or in the server, the ordering of b and w requests is zr, and the elapsed service time 
lies between x and x+dx ]. 

PN  
∞→t
N tP )(lim

rzjP ,       steady-state probabilities ∫
∞

0

, )( dxxP rzj

βj jλ;  j=1≤j≤N  
Fsrv(x)    c.d.f. of the service time of type srv ;  srv=b,w 
fsvr(x)     density function of the service time of type  

srvμ
1       ∫

∞

0

)( dxxxfsrv

 

hsrv(x) 
)(1

)(
xF

xf
srv

srv

−
 service rate for type srv 

)(sfsrv  Laplace transform of fsrv(x) 
* multiplication sign 
 
The algorithm below generates the states of the system: 
 
Number_nonblocked_customers(first_parent)=N; 
Seq(first_parent)=Ø; 
Add first-Parent to New_Parent_Nodes; 
Do while New_Parent _Nodes=Ø{ 
Parent_Nodes=New_Parent_Nodes; 
New_Parent_Nodes=Ø; 

NodesParentNodeParent __ ∈∀  
{Generate_all_children(parent_node} 
 andNodesParentnodeparent __ ∈∀ ∀ its children 
{Generate_Parent (parent_node)} 
} 
Generate_Child(node,i){ 
Number_nonblocked_customers(child)=Number_nonblocked_customers(node)-i; 
Seq(child)=(Number_nonblocked_customers(node)-i)*b+seq(node); 
Add child to Nodes} 
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Generate_all_children(node){ 
For  i=Number_nonblocked_customers ,0 
Generate_child(node,i); 
Endfor} 
 
Generate_parent(node){ 
If RM(seq(node))=b then 
  Number_nonblocked_customers(new_parent)=   

           Number_nonblocked_customers(node)+1; 
  Seq(new_parent)=w+seq(node)-LM(seq(node)); 
Add new_parent to New_Parent_Nodes; 
Endif}  
 
In each step a subset of parent nodes is created according to the transition 

, then the child nodes of each parent nodes are added to Z. Nodes 
with w as a rightmost character in the ordering do not generate parent nodes. The number of 
rightmost b’s in the generating ordering is decremented by one, so that the node will be 

exhausted in l steps. Since the node of the first subset has the largest number of such b’s, 

N step will be needed to exhaust it. So the algorithm produces all states (nodes) in N+1 steps.  

k
xqh

k ymbywm b ,,1 )(⎯⎯ →⎯++−−

{
placesl

bbm
_

...,...

{
placesN

bb
_
...,0

 
We will prove that the algorithm produces all possible system’s states. First we use induction 

to show that all ph1(x) transactions in a given subset occur between states in this subset. Let m,zz 
and m-1,zr+b be two states in the ith  subset (1≤i≤N-1). Obviously . If 
RM(zr)=b both states generate parent nodes in the (i+1)st subset and there is a ph1(x) transaction 
between them:  . A ph1(x) transaction also exists between their 
child states 

r
xph

r zmbzm b ,,1 )(⎯⎯ →⎯+−

bzwmzwm r
xph

r
b −+⎯⎯ →⎯+− ,,1 )(

bzwbm r −+j +− *)1 mj(, and rzwb ++− *)1(, .  
Since in the last subset RM(zr)=w for all states no ph1(x) transitions exist. 
 
Let’s denote two arbitrary states in the ith subset ,za  and j+l,zc (0≤i≤N+1, 0≤j≤N, 0≤l≤N,  

 and ) and an arbitrary state in the (i+1)st subset  by j,zd ( ). The 
following relations can be proven by induction on i 

iZ
iaz Z∈ icz Z∈ 1+iZ 1+∈ idz Z

 
Length(za)-length(zc)=l         (1) 

and 
Length(zd)-length(za)=1.        (2) 

Proof: Transitions  and 

 generate two parent states for which 
apparently (1) and (2) hold. Proof for the child states is straightforward. 

a
xqh

a
j

a zbwjzbjbzj b ++⎯⎯ →⎯+−⎯→⎯+ ,,1, )(λ

c
xqh zbwljb +++⎯⎯ →⎯ ,)(

c
lj

c zbljbzlj +−+⎯⎯ →⎯++ + ,1, )( λ

 
We can conclude now that transitions of type hw (x) occur from nodes in the (i+1)st subset to 

nodes in the ith subset. 
Viewing the nature of the system, we obtain the following set of differential equations             

βNPN=p +      (3)   ∫
∞

−
0

,1 )()( dxxhxP bbN ∫
∞

0
, )()( dxxhxP wwN
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⎥⎦
⎤

⎢⎣
⎡ ++ )(xh

dx
d

srvmβ )(, xP kym =0       (4) 

⎥⎦
⎤

⎢⎣
⎡ ++ )(xh

dx
d

srvjβ )(*)(, xP
kybjmj +− = βj+1           (5) )(*)1(,1 xP

kybjmj +−−+

 

⎥⎦
⎤

⎢⎣
⎡ + )(xh

dx
d

srv )(*,0 xP
kybm + =β1               (6) )(*)1(,1 xP

kybm +−

having the following boundary and normalizing conditions 

PN-1,b(0)=p + + βNPN                   (7) ∫
∞

−
0

,2 )()( dxxhxP bbbN ∫
∞

−
0

,1 )()( dxxhxP wbwN

)0(, kymP =q +                    (8)    ∫
∞

++−−
0

,1 )()( dxxhxP bk bywm ∫
∞

+
0

, )()( dxxhxP wk wym

for the ith subset (2≤i≤N),1≤m≤N, and no phb(x) transition to m,yk 

)0(, kymP =q +                                         (9) ∫
∞

++−−
0

,1 )()( dxxhxP bk bywm ∫
∞

+
0

, )()( dxxhxP wk wym

      + p  ∫
∞

+−
0

,1 )()( dxxhxP bk bym

For 2≤i≤N,1≤m≤N, and phb(x) transition to m,yk           

)0(, kymP =q    for the last (N+1)st subset .                         (10) ∫
∞

++−−
0

,1 )()( dxxhxP bk bywm

)0(*)(, kybjmjP +− =     for 0≤j≤m                                      (11) ∫
∞

++−
0

*)(, )()( dxxhxP wk wybjmj

for the ith subset (2≤i≤N),1≤m≤N, and no phb(x) transition to j,(m-j)*b+yk .             

)0(*)(, kybjmjP +− = p  +                  (12) ∫
∞

++−−
0

*)(,1 )()( dxxhxP bk bybjmj ∫
∞

++−
0

*)(, )()( dxxhxP wk wybjmj

for the ith subset (2≤i≤N),1≤m≤N, and phb(x) transition to j,(m-j)*b+yk.  

)0(*,0 kybmP + =  for 1≤i≤N                         (13) ∫
∞

++
0

*,0 )()( dxxhxP wk wybm

)0(*)(, kybjmjP +− =0   for 0≤j<m   for the last (N+1)st subset                      (14) 

∑
∈

=+
Zrz

rzjN PP 1,                            (15) 

By using discrete transform [4] the equations (4-5) are transformed as follows 

⎥⎦
⎤

⎢⎣
⎡ ++ )(xh

dx
d

srvjβ )(*)(, xu
kybjmj +− = 0 for 1≤j≤m                         (16) 

                
where                                                     

)()1()( *)(,*)(, xP
j
n

xu
kk ybnmn

m

jn

jn
ybjmj +−

=

−
+− ∑ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=  , and  

                                                            

)()1()( *)(,*)(, xu
j
n

xP
kk ybnmn

m

jn

jn
ybjmj +−

=

−
+− ∑ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=  
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Let 
)(1

)(
)(

*)(,
*)(, xF

xu
xv

srv

ybjmj
ybjmj

k

k −
=

+−
+−   and 

)(1

)(
)(

*,0'
*,0 xF

xP
xP

srv

kybm

kybm −
=

+

+  

Then from (16) and (6) we have after some manipulations 

⎥⎦
⎤

⎢⎣
⎡ + jdx

d β  =0                                            (17) )(*)(, xv
kybjmj +−

⎥⎦
⎤

⎢⎣
⎡

dx
d )('

*,0 xP
kybm + = .                                  (18) )('

*)1(,11 xP
kybm +−β

 
Hence solutions of (17-18) are 

x
ybjmjsrvybjmj

j

kk
euxFxu β−

+−+− −= )0()](1[)( *)(,*)(,   for 1≤j≤m                       (19) 

    

)0()](1[)0(1
1)](1[)( *,0

1

1
1*,0 )*(,)(

kkybnmnk ybmsrv
n

nnm

n
srvybm PxFu

xenxFxP +

−−

=
+ −+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−= +−−∑ β

β
β

                                             (20) 
By integrating (19-20), and from (3) we obtain the steady-state probabilities         

)0(
)(1

)1( *)(,
1

1
*, kk ybnmn

n

nsrvm

n

n
ybmj u

f
j
n

P +−
=

−
+

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑ β

β
                     

(21) 

srv

ybm
ybnmn

n

nsrv

srvn

m

n

n
ybm

k

kk

P
u

f
nP

μβ

β

μβ
β )0(

)0(
)(11)1(

'
*,0

*)(,
1

1

1
*,0

+
+−

=

−
+ +⎥

⎦

⎤
⎢
⎣

⎡ −
+−= ∑               (22) 

 

N

NwwNNbbN
N

fufpu
P

β

ββ )()0()()0( ,1,1 +
= −−                 (23) 

       
From (7-13) we get after some algebra the following linear equations 

NPfu
N
n

fu
N
n

pu

Nnw

N

Nn
wbnNn

Nn

nbbnNn

N

Nn

Nn
bN

ββ

β

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−=

∑

∑

−=
+−

+−

−

−

−=

+−
−

)()0(
1

)1(

)()0(
2

)1()0(

1
*)(,

1

*)(,

1

2

2
,1

                         (24) 

 
where yr=-w+yk+b.                    

)()0(
1

)1(

)()0()()0(
1

)1()0(

*)(,
1

1

,
1

*)(,
1

,

bbbybnmn

m

mn

mn

mwwymnb

l

mn
ybnln

mn
ym

fu
m
n

p

fufu
m
n

qu

k

krk

β

ββ

++−
−=

+−

+
−=

+−
+−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−+

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−=

∑

∑
             (25) 

 
where yr=-w+yk+b, for the ith subset (2≤i≤N), 2≤m≤N, and phb(x) transition to m,yk 
                      

)()0()()0(
1

)1()0( ,
1

*)(,
1

, mwwymnb

l

mn
ybnln

mn
ym fufu

m
n

qu
krk

ββ +
−=

+−
+− +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−= ∑           (26) 

  for the ith subset (2≤i≤N),2≤m≤N, and no phb(x) transition to m,yk .               
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)()0()0()0(
)(1

)1()0( 1,1
'

*,0
1

*)(,
1

1,1 β
β

β
β wwyybl

l

n
ybnln

n

nbn
y fuqPu

f
nqu

krrk ++
=

+−
− ++

−
−= ∑       (27) 

 
for 2≤i≤N.          
For the last subset we have 

)()0(
1

)1()0(
1

*)(,
1

, nb

l

mn
ybnln

jn
ym fu

j
n

qu
rk

β∑
−=

+−
+−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−=  for 2≤m≤N              (28) 
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u
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1
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)(1

)1()0(
β

β
β +              (29) )0('
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−

m
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m
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fu
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fu
j
n

pu
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)()0(
1

)1()0()1(
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1

1
*)(,

1
*)(,

β

β

               

(30) 
 for the ith subset (1≤i≤N), 2≤j≤m, and phb(x) transition to j,(m-j)*b+yk  .              
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(31) 

for the ith subset (1≤i≤N), 2≤j≤m, and no phb(x) transition to j,(m-j)*b+yk     .                 
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(32)   
for the ith subset (1≤i≤N), and phb(x) transition to 1,(m-1)*b+yk .                                                           
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1
*)(,
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for the ith subset (1≤i≤N),  and no phb(x) transition to 1,(m-1)*b+yk  .                            
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)(1

)1()0( '
*,0*)(,

1

1
1

'
*,0 wybmybnmn

n
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n

n
ybm kkk

Pu
f
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=

−
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β
β  for 1≤i≤N          (34) 

From (`4) by induction and using the relation we obtain 0)1(
0

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∑

=

j

n

n

n
j

kk ymybjmj u
j
m

u ,*)(, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=+−  for i=N+1,1≤j<m                          (35) 

Coefficients  can be determined from (15) and (24-35). )0(, rzju
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Various performance characteristics can be computed using the state probabilities. For 
example, the average number of waiting (blocked) customers (ANBC) in the case of blocking 
caches will be given by 

ANBC=  ∑
∈

−
Zr

r
z

zjPjN ,)(

 In the case of non-blocking caches ANBC will be 
ANBC= ∑ ∑

=
∈

≠
∈

−++−−

bzRM
z

bzRM
z

zjzj

r
r

r
r

tr
PjNPkjN

)( )(

,, )()1(
Z Z

  

where k is the ratio of average memory stall time [2] . k depends strongly on the application. 
(1-k) actually refers to the fraction time the processor is consuming data while cache-to-cache or 
memory-to cache transfer is in progress. 

 
Conclusion 
 
This paper presented a model for a shared memory, shared bus multiprocessor maintaining 

Invalidate type cache coherence protocol. We obtained the steady-state probabilities of the system 
so that the behaviour in equilibrium can be studied and analyzed.  

We showed that results can be applied to determine the output parameters for both blocking 
and non-blocking caches. 
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