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Abstract
Message Queuing Middlewares (MQMs) are gaining more and more attention in

large enterprises for building highly available asynchronous messaging systems and for
integrating heterogeneous applications. However, currently available MQMs consider
underlying networks as static. Therefore, in case of node failures or a disaster, either
they have to suffer long term service loss or they need to install a lot of extra resources
to ensure that no such failures cause service loss. They also require large administrative
overhead as the network is managed manually. Besides, as store and forward method is
used, reliable delivery of messages suffers much network delay and generates large
amount of traffics. Current MQMs are problematic especially if the network contains a
large number of nodes. In this paper, we propose a design of a Pastry based middleware
which can provide an asynchronous, reliable and in-order delivery service while
ensuring no long term service loss in case of failures or disasters. Such services can be
provided with minimum deployment cost. Our simulation based evaluation shows that
we can provide such services in a network of large number of nodes while generating
less traffic and requiring minimum administrative overhead.

Keywords: Asynchronous Messaging, Availability, In Order Delivery, Message Queuing
Middleware, Reliability.

1. INTRODUCTION
In today’s business environment applications need to be connected loosely to accept

continuously changing business roles. They also often need to communicate with each other in a
point to point/multi-point basis. The purpose of Message Queuing Middlewares (MQMs) is to
enable applications (also called clients or programs) to communicate across a network, without
having a private, dedicated,
logical connection to link
them [1, 2]. Applications
communicate indirectly by
putting messages on
message queues of the
middleware, and by taking
messages from the queues
[1, 2]. MQMs are usually
used when the
communicating
applications need to
execute independently and
concurrently without
waiting for one another to
reply, when the users are
often disconnected, for
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Figure 1: (a) HA master/slave clustering of brokers (Source: [5]). (b) HA
clustering of database servers (Source: [4]).
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example travelling sales men, etc. The queues may be distributed across a network. The
applications request a Queue Manager [1] running in a middleware node to route the message to the
destination queue. The queue managers are called Brokers or in some middlewares, e.g., in
Microsoft Message Queuing (MSMQ) the Routing Servers [2]. In a large enterprise level
deployment each site contains at least a broker or a High Availability (HA) cluster [4] of brokers
and the applications are connected to that broker or a broker in the cluster [2, 3, 5].

Considering single broker per site, if the broker of a site fails or taken offline for periodic
maintenance or upgrade, the applications does not have any broker to connect to. It even does not
have any way to fail over to a remote broker. Thus it suffers a long term service unavailability [3].

To avoid this loss, clustering is used. There are several approaches of clustering. Fig. 1(a)
shows a popular approach called HA Master/Slave broker cluster [5]. As we can see the brokers of a
cluster keep messages and configuration files in a shared database. All the applications of a site are
connected to a broker called master broker who holds the lock of the shared database. Other brokers
in the cluster continuously try to get the lock of the database. If the master fails, one of the slaves
gets the lock and becomes the master. If the master gets back, it joins as a slave. Thus if a broker
fails, applications can failover to another broker. However, please note that a broker can work only
if the database is available. To ensure that a database does not fail, another HA cluster of database
servers is necessary as shown in Fig. 1(b). Note that use of database cluster can be avoided if data is
synchronously replicated to all the brokers of the cluster. However, this approach has significant
overhead as replication is done for every incoming and outgoing message. Again, what will happen
if a disaster occurs and all the brokers and database servers are destroyed? We, again, need to invest
for disaster recovery.

Therefore, one problem of currently available MQMs (we also call traditional MQMs or
simply MQMs) is that there is no cost effective way to ensure that the service will not be stopped for
a period of failure of a broker or during periodic maintenance or upgrade.

MQMs’ responsibility is to transfer the messages up to the destination queue. Then the
application’s responsibility is to get the messages from the destination queue. As store and forward
[2, 3, 5] method is used, messages are stored at each broker from the source application to the
destination application. After storing at a broker, an acknowledgement is sent to the sending
machine.

MQMs provide both transactional and non-transactional messaging services [2]. If a set of
messages is indicated as transactional they are delivered to the destination queue exactly once and
in the order they are received. Non-transactional messagings are classified into two types, express
and recoverable. Express messages are not stored in persistent storage but only in the main
memory. Therefore, they are very fast but they are supposed to be lost if content of the memory is
lost (it can be caused by, OS crash, a reset etc). On the other hand recoverable messages are stored
in persistent storage so that they can be recovered in case of failure or cash. In contrast to the
transactional messages, the non-transactional messages are not guaranteed in order or exactly once
delivery semantics; however they are faster and have less overhead than the transactional messages.

Both transactional and non-transactional messages can be set to have reliability property
which means that after the messages reach to the destination queue, an acknowledgement will be
sent to the source site. Another acknowledgement will be sent after the message is consumed from
the queue. These acknowledgements will follow the reverse path from destination to the source
queue. Therefore, the sending application can be sure that a message has been reached to the
receiving application. Note that reliable messages have much overhead as two acknowledgements
are necessary in addition to acknowledgement of receipt of a message at each intermediate broker.

We have mainly surveyed routing mechanism used in MSMQ. It uses an efficient routing
algorithm to transfer a message from source queue to the destination queue. The routing algorithm
used in MSMQ is called Binary Reliable Message Routing Algorithm (MS-MQBR) [7]. The
enterprise is considered as a set of sites. Each site has link to one or more neighboring sites whom it
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can communicate directly. These links are called routing links who identify neighboring MSMQ
sites. The administrator sets a cost to each routing link. This cost represents how expensive it is to
transfer messages directly between the two sites.

To build the routing table, each broker considers the enterprise as a directed graph G = (S, E)
where S = set of vertices, i.e., the sites and E = set of directed non-negative weighted edges. MSMQ
then uses Dijkstra’s algorithm [10] to find least-cost paths to each destination site by finding a
spanning tree [10] that covers the entire graph. The algorithm populates the routing table from the
built spanning tree. The routing table contains two fields {DestinationSiteID, NextHopSiteId}[7].
When sending a message to a queue, to use the routing table, the broker must know the ID (called
Global Unique Identifier or GUID) of the site where the destination queue resides. MSMQ must use
another service running in the same site called the Active Directory Service [2] provided by the
Windows Servers. Active directory maintains all the queues/objects created in the whole enterprise
(not only those created in the same site) and the GUIDs of the sites where they have been created.

To make the algorithm work, in addition to the directory services several data structures are
needed. A table called SiteRecordTable of size O(N), where N is the number of sites, containing all
the site information. A table called RoutingLinkRecordTable containing cost information of all the
site links. If the average number of direct links from one site is f, the size of this table is f×N. A
table called MachineRecordTable containing the node/machine (i.e., site gate, routing servers,
connected networks etc.) information of all the sites. The size of the table is O(N).

The routing performance depends on how accurately the administrator estimated the link
costs, how many direct links for each site have been inserted into the RoutingLinkRecordTable
table. For reasonable values of these variables, the routing efficiency should be very good.

However, the problem lies elsewhere. Although the routing performance is better, as the
message is stored in each intermediate hops, it poses a significant amount of delay to the non-
express messages. It also generates much traffic. Besides, all the aforementioned data structures
must be maintained manually by the site administrators. This is an error-prone and time consuming
job requiring highest administrative overhead. Thus they are especially problematic if the network
contains huge number of nodes.

In this paper, we present a design of a new middleware based on Pastry p2p protocol [11],
called Pastry Based Message Queuing Middleware (PBM), to provide an asynchronous point to
point messaging service having reliable, exactly once and in-order delivery guarantee while
eliminating the aforementioned limitations. In other words, the proposed middleware will have low
traffic overhead and deployment cost but will not cause any long term service loss to the
applications. It also eliminates administrative overhead while maintaining reasonable routing
performance. Our middleware currently supports only point-to-point communication. However,
multi-cast communication semantics can be built over this point-to-point service. The novelty of our
work is that we first provide an in order and reliable messaging services over a structured p2p
network.

The rest of the paper is organized as follows. Section 2 presents the design details of our
proposed PBM. We analyze the messaging performance and traffic generation of both PBM and
MQM in Section 3. Section 4 evaluates PBM with respect to MSMQ. Finally before conclusion in
section 6, we present related work in section 5.

2. DESIGN OF THE PASTRY BASED MQM
As we have already described, the main problem of non-cluster deployment of an MQM is

that if it fails, brokers of other site can not take over the responsibility. This lack of dynamism is
solved by using Pastry structured p2p network. As Pastry network has self-managing characteristics
[11], it requires no administrative overhead to maintain the routing information.  Besides, as one
broker uses the resource of another broker (in another site) to replicate the stored messages to
recover from failures, it does not need any cluster. Thus it reduces the cost to deploy and mange a
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cluster.
Among a number of structured p2p protocols, we use Pastry because of two reasons: it is very

flexible, e.g., the average number of hops of a message can be adjusted by varying several
parameters and, most importantly, it provides a proximity routing which facilitates an approximate
mapping between physical and overlay network [11].

Throughout our discussion we assume that all the channels are unreliable (and hence faster).
Unlike MQMs, in our system a message is always destined to an application not to a queue. Queue
is managed implicitly. This relieves the application developers from managing middleware queues.

2.1. Basic Approach
Our approach is very simple. We let the brokers form a Pastry based p2p network as shown in

Fig 2. Each broker is assigned a 128 bit (hashed) ID called nodeId which is obtained by applying a
hash function H on the IP address/public key of the broker. Similarly, we use the same hash
function on names/address/public keys of an application, say A, to get its hashed key H(A). An
application gets connected to the broker whose nodeId is numerically closest to its key to get
messaging services from the network of brokers. We call this broker the responsible broker of A
and represent as resp(H(A)). Unlike traditional MQMs, responsible broker not necessarily resides in
the same site as of the application it is responsible for.

2.2. Types of Messages Supported
Like traditional MQMs, our proposed

PBM supports both non-transactional and
transactional messages. Transactional messages
are by default reliable and delivery order is
maintained. Therefore, they must be
acknowledged. If a message is set as non-
transactional but reliable, they must also be
acknowledged. But unreliable messages need
not to be acknowledged. All messages, either
transactional or non-transactional, in our system
are not necessarily stored in persistent storage.
As we will see such an approach is not suitable
for our system. If the receiving application is
offline all messages except the express
messages are replicated by the destination

broker. Unlike MQMs our middleware has not adopted the atomicity property of a transaction of
several messages (other than only single message) yet but we hope to adopt it in our future work.
Table 1 shows various types of messages and their properties.

Type Reliability Properties
Reliable Never replicated (by the destination

broker) but acknowledged
Express

Unreliable Neither replicated nor  acknowledged
Reliable Replicated and acknowledgedRecoverable
Unreliable Replicated but not acknowledged

Transactional Reliable by
default

Replicated, acknowledged and
delivered in order

TABLE 1: SUPPORTED MESSAGE TYPES AND THEIR PROPERTIES
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2.3. Message Transfer
Unlike MQMs, we avoid store-and-forward approach for it’s inefficiency. By storing, even if

we mean to store not in persistence storage rather in main memory (more specifically in a Main-
Memory Database called MMDB), it will not be very efficient in PBM. As in our approach if a
broker fails, another broker takes over the responsibility immediately; if we want to use store-and-
forward approach we have to store in one broker and replicate it in several other brokers over the
network. This will cause a severe delivery delay specially if this process is repeated, like MQM, in
all intermediate brokers in the path of a message.

Therefore, our approach of transferring a message is as follows. When an application A wants
to send a message to another application B, it sends the message to the responsible broker
resp(H(A)), i.e., the broker whose ID is numerically closest to the key H(A) of the application. We
call this broker the source broker of the message. The source broker keeps a copy of the message in
the main memory to resend later if necessary. The responsible broker then sets the destination field
as H(B) and sends the message. The message then reaches, may be via some intermediate brokers,
to the destination broker resp(H(B)) who is the numerically closest node of H(B). The destination
broker now checks the status information to know if application B is online or not. If it is online, it
sends the message to it. After receiving the message application B will send an acknowledgement
back to the responsible broker. This acknowledgement will now be forwarded to the source
application A through resp(H(A)).

However, if B is not ready to take the message or if it is currently offline, the message is
replicated to K-1 number of numerically closest brokers of resp(H(B)) and stored in the main
memory based queue of resp(H(B)). Only after this replication and storing operation is confirmed,
an acknowledgement is sent to resp(H(A)). Please note that all storing and replicating operations are
performed on main memory before sending an acknowledgement. However, after sending
acknowledgement, the memory based queues can be stored in persistent storage which may be
necessary to save the main memory space but not essential for recovery or other purposes.

Messaging in our middleware differs with that in traditional MQMs. In MQMs messages are
stored in every intermediate broker but in case of PBM it is not stored in intermediate brokers other
than source and destination brokers because unlike MQM, an acknowledgement of a message need
not follow a reverse path.

In PBM communication between application and broker is, in almost all the cases, inter-site
because as a hash based approach is used, an application not necessarily resides in the same site of
its responsible broker. Therefore, an application’s messages may need to be sent on the first hop to
a broker in other site. This may cause security risks. However, as we consider that MQM is
deployed in an enterprise boundary, a broker in another site belongs to the same enterprise causing
less risk. Nevertheless a security mechanism must be adopted. This is subject of our ongoing
research. There are some existing work on similar issue, e.g., PAST[15].

2.4. In-order Delivery and Duplication Elimination
In PBM transactional messages are sent in-order and are not duplicated at the destination

application. In our proposed system, if a message is transactional, the source application will not
send a second transactional message until it receive the acknowledgement either from the
destination application or from the destination broker. This slightly differs with traditional MQMs
where an application can send several transactional messages together to the source broker. This
appears to be a faster process. But the fact is that the source broker will send those messages to the
destination broker sequentially like that in PBM [3]. The source application can not be sure about
the fate of a transactional message until an acknowledgement comes from the destination broker
stating that the messages have been delivered to the destination broker/application. Therefore, this
difference between MQM and our middleware is not an issue if we consider application-to-
application or application–to-destination broker delivery because in such a case MQM should not
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be faster than our middleware.
About non-transactional messages, we

do not put any restriction like transactional
messages. It can send a message before getting
a reply of the previous one, as the non-
transactional messages need not maintain any
order.

Duplication elimination and in-order
delivery of messages work together in our
middleware. We define in order delivery as
follows: if an application A sends two
transactional messages m1 and m2 at times ts1
and ts2 respectively to the same application B
where the messages m1 and m2 are accepted at
times ta1 and ta2 respectively; if ts2 > ts1, then
ta2 > ta1 must be true. Please note that, PBM
(like MQM) does not ensure in-order delivery
if the sources or the destinations of two
transactional messages are different. In
applications, an out of order transactional

message, which must be a duplicate of a previously received message, is discarded.
To ensure in order delivery and duplication elimination, each message is tagged with a

message ID by the source application. The message ID need not to be consecutive but must be in
increasing order. In other words, if message m1 and m2 with IDs i1 and i2 are generated by an
application at times t1 and t2 respectively; if t2 > t1 then i2 > i1 must be true but it not necessarily be
true that i2 = i1+1. The following rule must be satisfied by each application to ensure an in order
delivery.

In Order Delivery Assurance Rule: If the ID of the last accepted transactional message
from an application is i, accept a received transactional message sent by that application only if the
ID of the message is greater than i.

To follow this rule, each application must remember the ID of the last received transactional
message from each application. This requires a data structure of maximum size equal to the number
of applications in the system.

However, a broker does not maintain such a data structure; therefore it may accept an expired
transactional message. When a broker receives a transactional message of id i1 whose source is A
and destination is B, it checks the queue maintained for the application B. If the queue is empty or
there is a message in the queue with id i2 < i1 for the same source and destination, it accepts and
insert the message in the queue. Therefore, if the queue is empty, an old message which is already
delivered may be accepted and inserted into the queue. An application may therefore receive an old
(and hence duplicated) transactional message. However, as the application needs to maintain the
stated data structure, such old transactional messages are not accepted rather discarded. Fig. 3
shows the algorithm used for this purpose.

Note that in traditional MQM based systems an application is not free from running a
duplication elimination algorithm also. MQM confirms the exactly once delivery of a transactional
message up to the destination queue (not up to the application). To get a message from the queue
which is in a different machine, the application need to run a duplication elimination algorithm if it
wants to get the message exactly once.

Please note that once a message, which was replicated to K-1 closest brokers, is delivered to
the receiving application, the responsibility of the destination broker is to try to delete the replicas
from the K-1 closest brokers. For this purpose, the destination broker sends a replica deletion

processMsg(m) //runs in broker
if (queue[m.dest] = NULL) queue[m.dest].insert(m)

and return
maxMsgId=queue[m.dest].getMaxMsgId(m.src,

m.dest, isTransactional=true)
if (m.isTransactional)

if (m.id > maxMsgId) queue[m.dest].insert(m)
else if ((m.id != maxMsgId)) queue[m.dest].insert(m)

end

processMsg(m) //runs in application
maxMsgId = lastAcceptedMsgId[m.dest])
if (m.isTransactional)

if (m.id > maxMsgId)
Accept the msg
lastAcceptedMsgId[m.dest]) = maxMsgId

    else accept the message
end

Fig. 3: In-order delivery and duplication elimination
algorithm
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message to those K-1 brokers. These messages are sent as unreliable express message. If this
message does not reach to a broker containing the replica, it can not delete it. Therefore, an
inconsistency may occur among the queues maintained by the K-1 brokers. What this loose
consistency can do is to cause an expired message to send to the application. As we have already
seen that this case is handled by the duplication elimination algorithm.

2.5. Message Reliability
If a reliable message is delivered to the destination application, it sends the acknowledgement

which is received by the sending application. However, if the message can not be delivered to the
receiving application, the destination broker replicates and stores the message and sends an
acknowledgement. After receiving the acknowledgement the sending application can understand
that the message has only been kept by the destination broker but has not been delivered to the
receiving application yet. After the message is delivered to the application, the destination broker
sends a delivery confirmation message to the sending application. This message is treated as
unreliable express message. Therefore, if the sending application is not online, the message is
stored (but not replicated) by the responsible broker of the sending application. If the sending
application does not receive any delivery confirmation, it can send the message again. This surely
can cause duplication of a message in the receiving application. But as each application runs a
duplication elimination program, duplicated messages are automatically discarded.

2.6. Handling of Application Failures and Arrivals
If an application leaves the system, the responsible broker does not need to know it

immediately. When the broker sends a message to the application and gets no reply it understands
that the application has left the system. The broker then starts replicating and storing messages on
behalf of that application until the application reconnects.

If an application reconnects, the stored messages are delivered to the application first. We call
this operation stored message delivery. Before this operation is finished, the broker needs to take
care to initiate any normal transactional message delivery operation because it may cause unordered
delivery of messages. Suppose stored message delivery operation contains a transactional message
m1 and before the operation is finished another transactional message m2 is attempted to deliver to
the same application (i.e., m1.destination = m2.destination) under a normal delivery operation. Note

that if m1.source = m2.source, m2.id >
m1.id as m2 has generated after m1. In
this case if m2 is propagated before m1,
m2 will be accepted but m1 will not
according to the in order delivery
assurance rule. The ultimate result is
unordered delivery of messages. This
situation, although rare, can occur
because, unlike MQM, we are not
storing every message in the queue.
We avoid such concurrent situations
by prohibiting the normal message
delivery operation that fulfills the
above constraints during a stored
message delivery operation. Fig. 4
shows a simplified algorithm to avoid
such situation.

2.7. Handling of Broker Failures and Arrivals
If a broker fails or a new broker joins, the leaf set of some other brokers is changed. If the leaf

deliver(m , key)  //m –message, key – destination
application

if (isContinuingSMD(key) //is stored message delivery
//operation is going on to key?

 if (!checkSMD(m.source, isTrans=true,
m.id))

send m to key
else do not send until

!isContinuingSMD(key)
else send m to key

end

Fig. 4: Algorithm to avoid unordered delivery due to concurrent
delivery operations
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set of a broker is changed, a function named update(nodeId,joined) is called at the upper layer of
the same broker. The current broker then checks if the broker (with ID nodeId) that joined/left
belongs to or were belonged to the set of K-1 closest nodes called replicaSet. If so and if it has left,
the current broker sends a message to it to delete the data that it kept as replicas on behalf of current
node (assuming that it has left the replica set but not the network). On the other hand, if it has
joined, the current broker sends the joining node all the necessary data that need to be replicated.
The data includes the transactional and recoverable messages and other information (e.g.
application profile) the current broker stores on behalf of the applications it is responsible for. The
data that is necessary to send can be bundled together before sending to reduce the protocol
overhead. We call this operation stored data replication. Fig.5(a) shows a simplified algorithm of
update() function.

However, there is a “loss of order” issue here. This may cause due to concurrent operations.
Suppose the current broker is sending a transactional message m1 as part of its normal replication
operation and before it is completed, a stored data replication operation is initiated which sends
another transactional message m2 as part of its operation. Note that m1.id > m2.id as m2 has already
been acknowledged by the broker. If the destination (i.e., the joining broker) of both operations is
same and if m1.source = m2.source and m1.destination = m2.destination then there is a probability
that m1 will reach first before m2. In such a case m2 will not be accepted (although m1 has already
been accepted before m2) by the joining broker (we have already discussed the reason in subsection
D of this section). Therefore, the queue of the joining broker will not contain m2. The ultimate result
may be that m1 is delivered to the destination application before m2, causing a loss of order. We

avoid this by prohibiting such situations to
occur concurrently. Note that probability of
occurring such situation is very little as a lot of
constraints are related to it. Fig.5(b) shows a
simplified algorithm to avoid such situation.

Each broker sends a periodic message to
the alive applications it is responsible for to
inform its presence. If an application does not
receive a periodic message it understands that
its broker has failed or left. It then sends a
lookup message to a known broker to know
who is responsible for it. After getting the
address of the new broker it can connect to it
and can resume its operation. Thus within a
little time an application can failover to
another broker. In case of MQM, if a broker
fails and there is no cluster member to
takeover, the applications have to wait until
broker(s) of that site is fixed [3].

3. MESSAGING PERFORMANCE AND
TRAFFIC ANALYSIS

We analyze the performance and the
generated traffic of PBM and MQM in this
section. We have not considered the failure of
a broker here because of two reasons. First, in
MQM if broker(s) of a site fails, the
applications of that site must have to wait for
services until the failed broker(s) resumes.

Fig. 5: (a) Algorithm to handle broker join and leaving. (b)
Algorithm to avoid unordered delivery due to concurrent
replication operations

update(nodeId, joined)
if (!joined AND wasInReplicaSet(nodeId))

send a message to nodeId to delete all replica
kept for thisNode

else if (!joined AND isInReplicaSet(nodeId))
send necessary replica to nodeId

end
(a)

replicate(m , nodeId )  //m –message, nodeId –
destination of replica

if (isContinuingSDR(nodeId) //is stored data
replication

//operation is going on to
nodeId?

 if (!checkSDR(m.source, m.destination,
isTrans=true, m.id))

send m to nodeId for
replication

else do not send until
!isContinuingSDR(nodeId)

else send m to nodeId for replication
end

(b)
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While in PBM, there is always some broker to provide services to the applications. Besides the
routing links need to be updated manually in MQM compared to automatic update in PBM. These
incompatible natures between MQM and PBM make comparison somewhat illogical. The second
reason is that as message queuing systems are deployed in enterprise boundaries, we assume, unlike
traditional p2p based system where a node leaves the network very often (e.g., when an user went to
sleep after shutdown his computer), a broker of MQM or PBM leaves the network only occasionally
when it is taken down for regular maintenance or upgrade or when a (very) rare failure occurs. The
analysis of this rare case does not have much value. Rather the analysis of the ideal case (without
failure) which contributes all most all the time is sufficient to know who perform better: PBM or
MQM.

Let us assume that the size of a message and its acknowledgement are lm bits and la bits
respectively including the protocol headers. We assume that all the broker to broker links has a
constant data rate p bps. We ignore the delay of a message caused by the LAN within a site.  Let us
also assume that the average propagation delay caused by the distance between two brokers is td
sec, the average storing (disk write access) delay is ts sec and the average number of hop counts for
PBM and MQM are hp and hm respectively. We ignore the storing delay if a message is stored in
main memory. We also ignore various optimizations that can be used (for both PBM and MQMs) to
improve performance.

3.1. Messaging Delay in PBM
Receiving Application is Online

In PBM, if the destination application is online a message is delivered directly to it. Therefore
the average delivery delay

tt = time to transfer to the source broker + time to transfer from source to destination broker +
time to transfer from the destination broker to the destination application

= (hp+2) (2lm/p + td)
The time to transfer the acknowledgement from the destination broker to the source broker is

ta = (hp+2) (2la/p + td)
Therefore, the round trip time (RTT) is

trt = tt + ta = (hp+2) (2/p(lm + la) +2td)
This delivery time tt and the RTT trt is for all type of messages assuming that the destination
application is online.
Receiving Application is Offline

When the destination application is offline, in PBM, the destination broker replicates the
message into closest K-1 leaf set members, stores it in its own memory and sends an
acknowledgement. Therefore in this case:

trt = message transfer time from sending application to destination broker + replica transfer time
+ replica acknowledgement transfer time + message acknowledgement transfer time

= (1+hp) (2lm/p + td) + (2lm/p + td) + (2la/p + td)+ (1+hp) (2la/p + td)
= (hp+2) (2/p(lm + la) +2td)

We assume here that replication to K-1 node is done in parallel. We ignore a small additional
delay caused by sending K-1 replica sequentially through a single channel. As we see that it is same
as RTT for message that is directly delivered to the receiving application. However, this expression
not valid for express messages because the express messages are not replicated. Therefore, for
express messages:

trt = (1+hp) (2lm/p + td) + (1+hp) (2la/p + td)
= (hp+1) (2/p(lm + la) +2td)

3.2. Messaging Delay in MQMs
In MQMs, delay between application and the broker is negligible as they reside in the same

site. But in case of transactional and recoverable messages additional delay is added due to storing
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of a message in each broker from source to destination application. When the acknowledgement is
sent back through the reverse path, another disk access is needed in each broker. Therefore, for
MQMs

tt = hm (2lm/p + td) + ts(hm+1)
ta = hm (2la/p + td) + ts(hm+1)
Therefore, the round trip time is
trt = tt + ta = 2ts(hm+1)+ hm (2/p(lm + la) + 2td)

We assume here that message storing time and access time during acknowledgement is same. In
fact the difference is negligible for small message size.
tt and trt are for recoverable messages. The transactional messages may require more time as it
follows a complex protocol. However, in MQMs express message requires less time as it is not
stored in persistent store. For express messages:

tt = hm (2lm/p + td)
ta = hm (2la/p + td)

Therefore, the round trip time is
trt = hm (2/p(lm + la) + 2td)

3.3. Traffic Generated for a Message in PBM
We would like to calculate, for a single message transfer from the sending application to the

receiving application, how much inter-site traffic (the message, replicas and the acknowledgements)
is generated in PBM. We ignore the traffic that is limited within a site.
Any communication between brokers is treated as an inter-site traffic. Unlike MQMs, in PBM
communication between application and broker is assumed to be inter-site because in all most all
the cases an application does not reside in the same site of its responsible broker. Therefore, the
total inter-site traffic if the destination is online:

lis =  lm(hp+2) + la(hp+2) = (hp+2)(lm+ la )
Total number of messages nis = 2(hp+2). This is valid for all type of reliable messages. For
unreliable messages as acknowledgement is not necessary, the inter-site traffic and the number of
messages will be lm(hp+2) and (hp+2) respectively.
However, if receiving application is offline, extra messages are necessary to replicate, to send an
acknowledgement from destination broker to destination sending application, to send a second
acknowledgement when the message is delivered after the destination application comes online and
to delete the replica. Therefore in such cases for recoverable (reliable) and transactional messages:

lis =  lm(hp+1) + (K-1)(lm +  la) + la(hp+1) + lm +  la (hp+2)+la(K-1)
= lm(hp+K+1) + la(2hp+2K+1)

We assume here that the replica deletion message size is same as acknowledgement. Total number
of messages nis = (3hp+3K+2). For reliable express messages

lis =  lm(hp+1) +  la(hp+1) + lm +  la (hp+2)
= lm(hp+2) + la(2hp+3)

Total number of messages nis = (3hp+5). Therefore, for unreliable express message lis = lm(hp+2)
and nis = (hp+2). But for unreliable recoverable messages they are lm(hp+K+1) + la(2K-2) and
hp+3K-1 respectively.

3.4. Traffic Generated for a Message in MQMs
For MQMs, the amount of inter-site traffic is almost same for all type of reliable messages. In

MQMs as an application and its responsible broker resides in the same site, inter-site traffic is
reduced. However, every broker, when receives a message, must send an acknowledgement first.
Additionally, as all the messages are stored in the destination broker, every (reliable) message is
acknowledged more two times, one when stored by the destination broker, another when delivered
to the receiving application. Compared with PBM, this increases the traffic significantly when the
receiving application is online. Therefore, for MQMs:
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lis =  lmhm +  lahm  + lahm +  la hm
= lmhm + 3lahm

Total number of messages nis = 4hm. For unreliable messages no final acknowledgements are
necessary. Therefore, the amount of traffic will be reduced much. Therefore, for unreliable express
and recoverable messages lis = hm(lm+ la) and nis = 2hm

3.5. Summary
As we see one of the main factors that affect the delivery delay and RTT is the propagation

delay td. Therefore, if the routing algorithm dispatches the messages through short paths, messaging
performance should be improved. In case of MSMQ, as it uses a least-cost path from source broker
to the destination broker, the average td will be very low. PBM can not choose a least-cost path but
can chose a low cost path as it take routing decision based on a proximity metric. Moreover, link
between an application and its responsible DIS is not optimal because it is not chosen based on
proximity metric rather on a hash value. Therefore, in PBM the path of a message is much longer
than that in MSMQ. However, PBM optimizes it by not storing messages in the persistent storage
through the path way. In PBM a message is replicated by the destination broker only if the receiving
application is not online. Whereas in MQMs, every reliable message is persisted in every broker
from the source to the destination application.

Other than propagation delay td and storing delay ts, another factor that affects both
performance and message overhead is the hop count. Our Pastry based approach performs better
than MQMs in this regard because hop count increases not linearly but logarithmically in PBM. As
we are using replication based approach, the value of K, that is, how many brokers will contain the
replica of a single broker is also a factor that affects the performance and message traffic.

4. EVALUATION
We have shown that our middleware can tolerate failure of a broker. If a broker fails, there

always has a broker who can take the responsibility provided that at least one broker is alive in the
system. In this section we show that despite providing such facilities, our middleware claims lower
deployment cost and generates less traffic. The messaging performance is also reasonable.

To know how PBM performs we design and run some experiments using OverSim[13] in
Omnetpp[12] simulation environment. Our simulation scenario is as follows: we consider that a
large enterprise deploys a messaging system in its many sites located over a large geographical area.
Each site has a broker and a number of client applications connected in a LAN. We obtain the keys
by applying a sha1 hash function on the names of the applications and the nodeIds by applying the
same hash function on the IP address of the brokers. An application sends a message to another
application via the responsible broker whose nodeId is numerically closest to the application’s key.
To understand the effect correctly we balance the load, i.e., we set the simulation in such a way that
each broker is responsible for equal number of applications and each application sends one message
for each type to every application including itself.

We set various parameters as follows: the Pastry configuration parameter b called bits per
digit is 4, both number of leaves and number of neighbors is set to 16. We choose disk write access
time randomly from 5 ms to 10 ms range [19]. To simulate the delay between brokers, at the
starting of the simulation, we fix the delay from each broker to every other broker randomly. The
random value ranges from 1 ms to maxDistance ms where maxDistance is the one-way propagation
delay (in ms) between the farthest brokers. We put these values in a distance matrix. We do not use
a two dimensional plane to simulate the distance because, in real situations, triangular inequality
does not hold. The propagation delay does not include the transmission and reception delay caused
by the channel bandwidth. We assume that all channels between brokers have a bandwidth/data rate
of 3.152Mbps.

We compare PBM with MSMQ to understand how the system would perform if MSMQ were
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deployed in case of PBM. We use the same distance matrix used in PBM. MSMQ uses a least-cost
path algorithm to route a message from one broker to another. We consider propagation delay as the
cost. We do not include storing delay in the cost, because express messages are not stored. As
MSMQ is configured and maintained manually we assume that from every broker there are direct
links to 5 other brokers. We assume that the administrator is careful enough (although in real it is
very difficult) to choose the least-cost links as the direct links. We choose smallest 5 values from
each row of the distance matrix for 5 direct links. Based on these direct links we run Dijkstra's
algorithm to find the least-cost path from each broker to every other broker. These least-cost paths
are used for messaging between applications in our MSMQ simulator.

4.1. Scalability
To know how PBM perform as the broker network grows in size, we fix the maximum one

way propagation delay (indicates the length of the geographic area) to 15 ms and vary the number
of brokers from 64 to 1024. Then we plot the one way average delivery delay in Fig.6(a) and round
trip time in Fig.6(b) for different types of messages in log scale (with base 2b = 16). If the receiving
application is offline, we measured the delay between the sending application and the destination
broker.

As we see from both figure 6(a) and 6(b) that the growth of one way delivery delay and RTT
in MSMQ is more rapid than that in PBM. This indicates that as the number of brokers grows PBM
performs better than that of MSMQ. Also for maximum propagation delay of 15 ms and for all type
of messages except for express messages, PBM perform much better than MSMQ especially for
higher number of brokers. But as we will see in a subsequent experiment that in very long
geographic areas our middleware does not perform well.

4.2. Traffic Generation
In the same experiment for measuring scalability, we measure how many inter-site messages

(original messages, replicas and the acknowledgements) are generated for transferring a single
message from one broker to another broker. This experiment gives an idea how much traffic is
generated in PBM compared to MSMQ. We assume that, in PBM, the value of K = 3, i.e, if the
receiving application is offline, the destination broker replicates into K-1 = 2 closest (numerically)
brokers and store it in itself. Our assumption K = 3 is reasonable because in order for a long term
service loss of the applications in a site all 3 brokers must fail within a very short time. The
probability of such occurrence is extremely low as those 3 brokers are dispersed geographically. In
PBM network with K=3 is more resilience than the network in MSMQ with three cluster members
in each site because PBM is not affected by a disaster while MSMQ does. We plot the number of
messages generated in reliable and unreliable messaging in Fig.7(a) and Fig.7(b) respectively.

Fig. 6: (a) Delivery delay Vs. Number of brokers
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As we see from the figures that in MSMQ the number of generated messages grows very
rapidly than that in PBM. This is another proof that PBM is more scalable. In MSMQ the number of
generated messages is same if the receiving application is offline or online because all the messages
are stored. In contrast, in PBM if the receiving application is online it requires much less number of
messages as the message is not replicated. However, if it is offline, a slightly higher number of
messages are required as the message is replicated. Even though, if the number of brokers is above
1000, MSMQ performs worse than PBM. The usual case should be that for most of the messages
the receiving application is online. Therefore, on average PBM generates much smaller number of
messages than MSMQ.

4.3. Effect of Broker to Broker Distance
As we have stated that messaging performance is affected by the one way propagation delay

between two communicating brokers. In this experiment we compare the messaging delays with
that in MSMQ for various propagation delays. We vary the maximum propagation delays from 10
ms to 60 ms and plot the messaging delays in Fig.8(a) and Fig.8(b). The maximum propagation
delay indicates how large the geographic area is where the messaging system is deployed.

As we see from the figures, in PBM the one way delivery delay and RTT varies rapidly as the
maximum distance increases. However, in MSMQ they are almost constant because the messages
are always getting a least-cost path which is slightly affected if the average propagation delay
increases. As we see in MSMQ express messages have very good performance which is comparable

Figure 8 (b):  RTT Vs. Size of the geographic area in
term of propagation delay between the farthest brokers
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with PBM only if deployed within a limited geographic area. However, in a messaging system
transactional and recoverable messages should dominate. For these types of messages our
middleware performs very well within a geographic area bounded by the propagation delay about
35 seconds. Over this value, MSMQ perform well. According to our measurement using ping
command (in peak hours), propagation delay of 35 sec (hence RTT is about 70 sec) covers a
medium sized country boundary e.g. Japan (far ends of). Therefore, within such a country boundary
PBM performs better than MSMQ.

4.4. Administrative Overhead
As we see that in MSMQ, in order to populate the routing table by the routing algorithm, a

number of input tables are needed, e.g., SiteRecordTable, RoutingLinkRecordTable,
MachineRecordTable. Such tables need to be maintained manually by the site administrator [7].
This might be easy if the messaging system is deployed in a limited number of sites. As the number
of sites grows, maintaining such tables manually becomes very difficult and time consuming. Our
proposed PBM does not suffer from this problem. Here nothing needs to be maintained manually.
The routing tables, neighbor sets, leaf sets, queues, applications’ connection information all are
updated automatically as the broker or application leaves or arrives. Although this requires some
extra traffic overhead due to
periodic communication
among brokers, MSMQ also is not free from such overhead. For example, it needs active directory
service which generates some extra traffic to maintain the service.

Type of Deployment Hardware Quantity Typical
Price (USD) Total Price

PBM Application Server 1 2000 2000
MSMQ with Clustering Application Server 2 2000 4000

Database Server 2 3500 7000
MSMQ without Clustering Application Server 1 2000 2000

4.5. Deployment Cost
Unlike MQM, PBM does not require that every site must install a broker. Therefore, PBM can

be deployed with very little cost. Even if we consider that every site should have a broker,
deployment cost is not higher compared to MQM. If a cluster based deployment is used for MQM,
each site must have at least two application servers and two database servers assuming that the
popular master/slave clustering is used. If a non-cluster based deployment is used, each site requires
one server resulting in equal cost of PBM. Table 2 shows per site cost comparison between PBM
and MQM assuming that as an application server Dell PowerEdge 2970 and as a database server
Dell PowerEdge 2950 III is used. As we see for a cluster based deployment MQM requires more
than five times investment compared to PBM excluding the disaster recovery management cost.
However, a non-cluster based deployment of MQM costs same as PBM. However, such deployment
can not provide resilience to broker failures.

4.6. Discussion
The scalability experiments shows that as the number of broker increases, messaging delays

grow slowly in PBM compared to that in MSMQ. However, in the last experiment we see that PBM
perform better only in a country boundary. These two results are not contradictory. They mean that
PBM performs well if more number of brokers are installed within that boundary. For example, if
there are 1000 sales centers of an enterprise over a country, they can deploy a PBM for better
services compared to MSMQ. Outside this boundary although PBM can not provide better
performance but what it can provide is lesser traffic generation, lower deployment cost, automatic
failover, minimum administrative overhead.

TABLE 2: PER SITE COST COMPARISONS BETWEEN PBM AND MQM
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5. RELATED WORK
We have not found any work which considers the issues directly related to the currently

available MQMs. JMS[20], AMQP[21] tries to standardize communication between applications
and brokers. But they do not define how the message should be routed (which is our main concern)
between brokers distributed in a network. However, we have found several works related to
messaging systems built on p2p networks. P2P based systems are used mainly to provide persistent
shared storage services to the clients, e.g., CFS[14], PAST[15] etc. In such systems, unlike our use,
a file is stored/uploaded once but accessed many times. Therefore, file searching, efficient use of
storage are some of the main issues of shared storage which are not issues for our system where a
message will be deleted from the queue once it is delivered. P2P network is also used as a
middleware for multicast/anycast or publish-subscribe based systems, e.g., Hermes[16], REM[17],
SCRIBE[18], REBECA[]. We use Pastry as a point to point message queuing middleware (not as
publish-subscribe). Our proposed middleware needs to solve issues related to reliable, in-order and
exactly once delivery semantics. Some instant messaging systems, e.g., DIMA[8], which is partially
related to our work, have been built on Pastry but they have not considered those issues. Another
related work is POST[9], a general purpose messaging system based on Pastry. POST uses store-
and-forward architecture and can provide multi-cast communication. However, POST has some
limitations. It does not consider in-order delivery issue as it is not a message queuing middleware.
Each of the messages is stored in persistent storage and replicated to a number of brokers compared
to of only those messages that can not be delivered in our middleware. As the cost of storing and
replicating in a network is very high, our system should be much faster than POST. Besides,
sending a message must be followed by a notification message consuming more bandwidth. If the
destination application of a notification is not alive, it adopts a costly approach to deliver the
notification.

6. CONCLUSION
We have proposed a novel approach to design MQMs based on Pastry peer to peer protocol.

Our middleware eliminates a number of problems of traditional MQMs. It failovers automatically to
another broker located in a different site if the current broker fails, it eliminates the administrative
overhead necessary to maintain the broker network. Experimental evaluation shows that such
services can be obtained with reduced traffic overhead and that our middleware is especially
appropriate for a network of large number of brokers deployed in a country boundary.

However, we have to consider some more issues. As the states are not necessarily to be
persisted, if a broker is crashed and losses its memory content or if it is restarted, it must get
necessary state information and replicas from its replica set members. Besides, as the network is
self-managed, in some cases of link failures, it can create a network partition. We have not
considered it yet although existing methods are available to guard against such partitions. Also, we
have to consider how a point to multi-point communication can be provided based on our point to
point service.
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