УДК-(теория чисел.) 511

0-Конгруэнтные числа для сингулярных треугольников

H. Канделаки 1 , Γ . Церцвадзе 1 Институт вычислительной математики им.Н.Мусхелишвили, Грузия, Тбилиси

Абстракт

Треугольник называется сингулярным, если его площадь равняется периметру.

B работе исследуются сингулярные треугольники с рациональными сторонами и с фиксированным рациональным θ -углом. Без привлечения гипотезы Бёрча-Суиннертон-Дайера, для таких треугольников конструктивно построены все бесконечные последовательности как θ -конгруэнтных, так и θ – неконгруэнтных чисел.

Ключевые слова: θ – конгруэнтные числа, сингулярные треугольники, теорема Туннелла, гипотеза Бёрча-Суиннертон-Дайера.

§1. Введение

Натуральное число \mathbf{n} называется конгруэнтным, если существует прямоугольный треугольник, все стороны которого рациональны, а площадь равна \mathbf{n} . Первое конгруэнтное число $\mathbf{n}=5$ построил Фибоначчи. Позже, великий Ферма доказал, что числа $\mathbf{n}=1,2,3,4$ не являются конгруэнтными. Ясно, что число $\mathbf{n}=6$ конгруэнтно и фиксируется известной первой примитивной пифагоровой троикой $\mathbf{a}=3$, $\mathbf{b}=4$, $\mathbf{c}=5$ ($\mathbf{a}^2+\mathbf{b}^2=\mathbf{c}^2$; $\mathbf{a}\mathbf{b}/2=6$). Со временем стало известно, что число $\mathbf{n}=7$ конгруэнтно (Эйлер). Одноко, попытка найти общее решение этой древней и важной задачи теории чисел казалась совершенно безнадежной. Только в 1983 году молодому американскому математику Дж.Туннеллу удалось дать замечательное и почти исчерпывоющее решение этой задачи [1]:

Теорема (1.1). Пусть п натуральное число, свободное от квадратов. Рассмотрим условия :

- (А)- п конгруэнтно,
- (В)- число троек целых чисел (х, у, z) удовлетворяющих уравнению

$$2x^2+y^2+8z^2=n$$

равно удвоенному числу троек, удовлетворяющих уравнию

$$2x^2+y^2+32z^2=n$$
.

Тогда из (А) следует (В). Кроме того, если верна слабая форма гипотезы Бёрча-Суиннертон-Дайера то из (В) следует (А).

Центральное место в знаменитой слабой гипотезе Бёрча-Суйннертон-Дайера занимает L-функция Хассе-Вейля еллиптической кривой [1]:

$$L(E \cap s) = \Pi(1-2ap^{-s}+p^{1-2s})^{-1}$$
 (1.1)

эллиптической кривой

$$E \cap : y^2 = x^3 - nx$$
 (1.2)

и формулируется так:

 $L=L(E\cap 1)=0$ тогда и только тогда, когда эллиптическая кривая $E\cap$ имеет бесконечно много рационалных точек.

Важнейшим результатом в этом направлении является теорема Дж. Коутса и Э. Уайлса [1]:

Теорема (1.2) Пусть Е эллиптическая кривая, определенная над Q и обладающая комплексным умножением. Если Е содержит бесконечно много Q-точек то,

$$L(E,1)=0$$
 (1.3)

Понятие особенных прямоугольников с равной между собой площадью и периметром древнейшее понятие. Пусть \mathbf{X} и \mathbf{Y} натуральные числа, задающие длину и ширину прямоугольника с площадью \mathbf{r} . Тогда для особенных прямоугольников возникает следующая система в множестве натуралных чисел \mathbf{N}

$$\begin{cases} X+Y=r/2 \\ XY=r \end{cases}$$
 (1.4)

решение которой, как хорошо известно, имеет следующий вид

$$X_1=4$$
 $Y_1=4$ $r_1=16$ $X_2=6$ $Y_2=3$ $r_2=18$ (1.5)

Особенные многоугольники, естественно, назвать сингулярными.

В данной работе мы рассматрываем только сингулярные треугольники.

§2. θ-рациональные треугольники и числа

В моногрифии [1] доются важные обобщения прямоугольных треугольников, соответствующих конгруэнтных чисел и тщательно анализируются их широкие возможности.

Основным понятием здесь является рациональность угла. И так, угол треугольника θ , вообще говоря, не объязательно прямоугольного, называется рациональным, если его $\sin\theta$ и $\cos\theta$ одновременно рациональны. Треугольник с рациональными длинами сторон X,Y,Z и с рациональным углом θ мы будем называть θ -рациональным треугольником. Ясно, что для этого треугольника, если θ лежит между сторонами X и Y площадь треугольника Γ также рациональна

$$r = XY\sin\theta/2 \tag{2.1}$$

Также как и в прямоугольном случае, выделение рационального квадрата s^2 из числа r задает число свободное от квадратов, т.е. $r=s^2p_1\,p_2\ldots p_n$, где $p_1\,p_2\ldots p_n$ простые числа, так, что

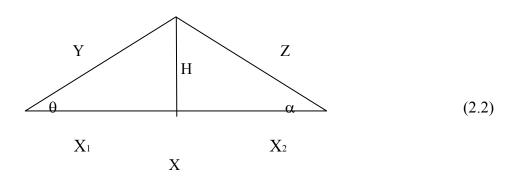
$$r=s^2 n(n=p_1...p_n).$$

Теперь гомотетия S^{-1} для площади треугольника фиксирует число п свободное от квадратов. Поэтому для наших треугольников справедливо говорить о конгруэнтности числа r, или же о его неконруэтности. Обозначим через X основание θ , а углы при основании через θ и α соответственно. Имеет место следующее предложение

<u>Предложение (2.1)</u> Треугольник является θ рациональным тогда и только тогда, когда $x \in Q$ и углы θ и α одновременно рациональны.

<u>Доказательство:</u> Для доказательства достаточности, нужно показать, что Y и Z принадлежат Q. Допустим на основание X высоту длиной H и обозначим длины отрезков от высоты H до углов θ и α через X_1 и X_2 соответственно. Картина такая

$$X = X_1 + X_2$$



Согласно (2.2) мы имеем

$$\begin{cases}
H=X_1 tg\theta \\
H=X_2 tg\theta
\end{cases} \iff \begin{cases}
Htg\alpha = X_1 \\
Htg\alpha = X_2
\end{cases} => H=X(ctg\alpha + ctg\theta)^{-1} \qquad (2.3)$$

Так как по условиям предложения $x \in Q$, θ и α одновременно рациональны, то H рациональна и, следовательно, x_1 и x_2 также рациональны. С другой стороны т.к.

$$Y=H/\sin\theta$$
, $Z=H/\sin\alpha$ (2.4)

то У и Z рациональны. Достаточность предложения докозана. Для доказательства необходимости нужно лишь показать, что α рационален, т.е. что $\sin\alpha$ и $\cos\alpha$ одновременно рациональны. Но это следует непосредственно из теоремы синусов и косинусов

$$\sin\alpha = \frac{y}{Z\sin\theta}$$
 $\cos\alpha = \frac{(X^2 + Z^2 - Y^2)}{2XZ}$ (2.5)

Ясно, что если θ треугольник задан, то площадь r конгруэнтна

$$(p,q)=1$$
 $p/q=r=HX/2$ (2.6)

и соответствующая эллиптическая кривая имеет вид

$$y^2 = q^2 x^3 + 2ctg\theta x^2 qp - p^2 x$$
 (2.7)

с корнями для $f(x)=q^2x^3+2ctg\theta\ x^2qp-p^2x$, при $ctg\theta=4/3$, $x_1=0$, $x_2=p/3q$, $x_3=-3p/q$. Все это показывает насколько важный класс эллиптических крывых порождаетая при рассмотрении θ треугольников . Поэтому начиная с этого момента мы фиксируем угол θ , так что

$$\sin\theta = 4/5$$
; $\cos\theta = 3/5$; $\cot\theta = 3/4$ (2.8)

Заметим, что выбор этих значений обусловлено первой примитивной пифагоровой троикой

$$a=3, b=4, c=5 \quad (a^2+b^2=c^2) (3^2+4^2=5^2)$$

с площадью

$$ab/2=1/2*3*4=6$$
.

Читатель, конечно, помнит, что нашим основным дополнительным предположением является сингулярность треугольников

$$X+Y+Z=r (2.9)$$

§3. Основные результаты

И так, согласно (2.8) мы имеем

$$XY = 5r/2 \tag{3.1}$$

а согласно (2.9)

$$X+Y+Z=r$$
 =>
 $X+Y+(X^2+Y^2-2XY\cos\theta)^{1/2}=r$ =>
 $X+Y+(X^2+Y^2-2XY^3/5)^{1/2}=r$ =>
 $(X^2+Y^2-2XY^3/5)^{1/2}=r-X-Y$ =>
 $X^2+Y^2-2XY^3/5=r^2+X^2+Y^2-2R(X+Y)+2XY$ =>
 $x^2-2r(X+Y)+2XY+2XY+3/5=0$ =>
 $x^2-2r(X+Y)+8r=0$ =>
 $x+Y=(r+8)/2$ =>
 $x+Y=(r+8)/2$ =>

Таким образом,

$$X+Y=(r+8)/2;$$
 $Z=(r-8)/2$ (3.2)

Важно отметить, что из (3.1) и (3.2) фиксируется система

$$\begin{cases} X+Y=(r+8)/2 \\ XY=5r/2 \end{cases}$$
 (3.3)

Напомним, что r = p/q (p,q)=1, тогда решение (3.3) относительно X и Y непосредственно даёт следующее

$$X=1/4q \left[p+8q+(p^2-24 pq+64q^2)^{1/2}\right]$$

$$Y=1/4q \left[p+8q-(p^2-24 pq+64q^2)^{1/2}\right]$$
(3.4)

Но X и У являются рациональными тогда и только тогда, когда подкорневое выражение в (3.4) есть полный квадрат, т.е когда

$$p^2-24 pq+64q^2=l^2 l \in N$$
 (3.5)

Решая (3.5) относительно р получим p=12q+($80q^2 + l^2$) ^{1/2}. Для удобства пусть l=4 l_1 и обозначатся l_1 опять через l мы окончательно получим , что

$$p=12q+4 (5q^2+l^2)^{1/2}$$
 (3.6)

Таким образом, мы доказали следующую лемму:

Для сингулярного θ треугольника с $\sin \theta = 4/5$ и площадью r = p/qЛемма (3.1) имеем p=12q+4 $(5q^2+l^2)^{1/2}$.

Ферма высказал очень глубокую гипотезу о числах вида $5 \cdot q^2 + l^2$ [2]. Сначала строится последовательность простых чисел вида 4n+3 последняя цифра которых есть 3, либо 7. Эта последовательность имеет вид и она, конечно, бесконечная

$$3, 7, 23, 43, 47, 67, 83, 103, 107, 127, \dots$$
 (3.7)

Гипотеза Ферма заключается в следующем: Если λ1 и λ2 простые числа из последовительности (3.7), то $\lambda_1 \lambda_2 = 5q^2 + l^2$. Так, например:

$$3*3=2^2+5*1^2$$
; $3*7=4^2+5*1^2$; $7*7=2^2+5*3^2$; $3*23=8^2+5*1^2$ (3.8)

Эта гипотеза не только верна, но и являестя основным фактом о числах вида $5q^2+l^2$. Это ещё одно подтверждение гениальности Ферма именно в теории чисел.

Если мы рассмотрим теперь квадраты простых чисел из бесконечной последовотельности (3.7)

$$3^2, 7^2, 23^2, 43^2, 47^2, 67^2, \dots, \lambda_k^2$$
 (3.9)

тогда согласно гипотезе Ферма из (3.6) мы получим бесконечную последовательность равенств

$$p_{\kappa}=12q_{\kappa}+4\lambda_{\kappa}$$
 $\kappa=1, 2,$ (3.10)

так как

$$\lambda_{k}^{2} = 5q_{k}^{2} + l_{k}^{2} \tag{3.11}$$

Как видим, процедура построения конгруэнтных чисел такова : берется к-тое простое число λ_k из бесконечной последовательности (3.7) которое возводится в квадрат λ_k^2 затем $l_{\mathbf{k}}$ определется соотношением

$$\lambda^2_k = 5q^2_k + l^2_k$$

при фиксированном $q_k=1,2,\ldots$ Последовительность равенств $p_k=12q_k+4\lambda_k$ бесконечна. Более того, этой последовательностью исчерпываются все конгруэнтные числа для нашего сингулярного θ -треугольника $r_k = p_k/q_k$.

Примеры:

- 1) $3 \cdot 3 = 5 \cdot 1^2 + 2^2$, $q_1 = 1$, $l_1 = 2$, $p_1 = 12 \cdot 1 + 3 = 16$, $p_1/q_1 = 15/1$. 2) $7 \cdot 7 = 5 \cdot 3^2 + 2^2$, $q_2 = 3$, $l_2 = 2$, $p_2 = 12 \cdot 3 + 7 = 43$, $p_2/q_2 = 43/3$. 3) $23 \cdot 23 = 5 \cdot 3^2 + 22^2$, $q_3 = 3$, $l_3 = 22$, $p_3 = 12 \cdot 3 + 23 = 59$, $p_3/q_3 = 59/3$. 4) $43 \cdot 43 = 5 \cdot 9^2 + 38^2$, $q_4 = 9$, $l_4 = 38$, $p_4 = 12 \cdot 9 + 43 = 151$, $p_4/q_4 = 151/9$.

- 5) $47*47=5*21^2+2^2$, $q_5=21$, $l^2_5=2$, $p_5=12*21+47=299$, $p_5/q_5=299/21$.

Эту замечательную последовательность мы можем продолжать бесконечно для 672, 1012, 1072, и.т.д., А это в свою очередь означает, что мы без привлечения гипотезы Бёрча-Суиннертон-Дайера построили бесконечную последовательность конгруэнтных чисел для сингулярных θ треугольников, эллиптическая крывая которых имеет вид

$$y^2=q^2x^3+2ctg \theta x^2qp-p^2x$$

при $\sin \theta = 4/5$ с бесконечным числом рациональных решений. Суммируем теперь эти результаты в виде основной теоремы предлагаемой работы :

Теорема (3.1) Рассмотрим эллиптическую крывую
$$y^2 = f(x)$$
, где

$$f(x)=x(x-p/3q)(x+3p/q), (p,q)=1 (y^2=q^2x^3+8qpx^2/5-p^2x).$$

Без привлечения гипотезы Бёрга-Суиннертон-Дайера эта крывая имеет бесконечно много рациональных решений (p_{κ} , q_{κ})(κ =1,2,...) Здесь

$$p_{\kappa}=12q_{\kappa}+\lambda_{\kappa}$$
, $(\kappa=1,2,...)$

где λ_{κ} простые числа вида $\lambda \kappa$ =4nк +3, последняя цифра которых 3 или 7 (3, 7, 23, 43, 47, 67, 103, 107, 127, . . .)

Как видим, наш результат конструктивен, т.е. последовательность $(p_{\kappa}, q_{\kappa})(\kappa=1,2,\dots)$ строится явным образом, без привлечения каких либо вспомогательных гипотез.

Литература

- 1. Н.Коблиц. Введение в эллиптические кривые и модулярные формы. Москва, «Мир», 1988.
- 2. Г.Эдвардс. Послебняя теорема Ферма. Генетическое введение в Апчебраическую теорию чисел. Изб. «Мир». Москва 1980.

Статья получена: 2009-01-16