
Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2009|No.5(22)

 174

Novel Approaches to Teach and Learn Courses on Computer Operating
Systems

Pinaki Chakraborty, P. C. Saxena

School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi – 110067, India.

E-mail: pinaki_chakraborty_163@yahoo.com

Abstract
The courses on computer operating systems are indispensable in any curriculum

in Computer Science. However, it has been observed that it is difficult to competently
teach these courses using the conventional ways. So, some customized approaches are
required to be designed for these courses. The current paper contends the use of
pedagogical operating systems, models, simulations and performance measurement
techniques to teach and learn the courses on computer operating systems.

Keywords: Computer operating system, pedagogical operating system, model,
simulation, performance measurement

1. Introduction
A computer operating system is a piece of software that manages all the resources of a

computer system, both hardware and software, and provides an environment in which the users can
execute their programs in a convenient and efficient manner [1, 2]. A sound knowledge of the
computer operating systems is a desirable qualification for all information technology professionals
and an essential for all computer engineers. However, traditional ways of classroom teaching fails
to generate much interest about the courses on operating systems among the students. This
phenomenon has been observed around the globe and over the years. Students often complain of
having difficulty in apprehending the courses on operating systems. And when these students
graduate as professionals, they find it difficult to obtain a comprehensive and logical view of the
operating systems and fail to optimally utilize the available computer systems.

Perhaps the best way to solve this longstanding problem is to take support from the
laboratory. However, it is not easy to arrange a suitable programming laboratory for the courses on
operating systems. The key problem with the operating systems is that even the small and simple
ones are too large and too complex [3]. So, the students cannot be asked to develop an operating
system as an exercise. Although it is feasible to ask students to design and implement a small piece
of an operating system, like a CPU scheduler, it has been observed over the years that nobody
learns much about operating systems in this approach. Alternatively, the concepts of API
programming or shell programming can be introduced to the students in the laboratory but that also
does not help very much in understanding the basic structure and the behavior of the operating
systems. Nevertheless, some unconventional approaches have evolved over the years to study
operating system. Four such approaches have been discussed in Sections 2 to 5.

2. Pedagogical Operating Systems
It has been observed that the students learn by experimenting and not merely by listening [3].

If the source code of a simple and well documented operating system is available to the students
then they can study the structure and the internal working of the operating system. Some of the
students can even go ahead to modify some parts of the given operating system. This approach
improves the understanding of the subject among the students [4]. As a result, quite a few
pedagogical operating systems, also known as instructional operating systems, have been

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2009|No.5(22)

 175

developed. The characteristic features that make these operating systems pedagogical are listed
below.

1. The source code of the operating system, in full, should be available to the users [5]. Since
the source code of an operating system typically spans several thousand lines, it should be
properly modularized. Moreover, the source code should be readable and for this purpose
appropriate comments should be used in the source code wherever necessary.

2. The structure and the functioning of the operating systems must be thoroughly
documented and published.

3. As one of the requisites of being pedagogical, the operating system should have an option
for a verbose mode of operation [6]. When used in this mode, the operating system should
explain the internal working of the entire computer system to the users in a stepwise
manner.

4. It is often desirable to have tools to compile, link and debug the source code available
along with the operating system. Such tools allow the learners to experiment with the
source code and rebuild the operating system.

3. Models of Operating Systems
The use of models to teach and learn intricate concepts is common in various subjects. The

use of formal models has been quite successful in several disciplines of Computer Science too [7].
Similarly, formal and semiformal models can be also developed for operating systems. Such a
model should broadly describe the various components in an operating system, their internal
functioning, and the interactions between them. It should explicate how an operating system forms
the control mechanism of the entire computer system. Such a model must illustrate how an
operating system acts as a resource allocator for the system, a control program for the users and an
extended machine for the system developers. Such models should be able to integrate the different
principles and concepts used in operating systems, negotiate various design considerations, and also
lay down some basic guidelines for implementation. There are some features, as follows, that are
essential in a good model of computer operating systems.

1. A model of operating systems must illustrate the controlling and the management of the
entire computer system by the operating system.

2. A model of operating systems should be independent of the hardware architecture of the
computer system and preferably cover all peripheral devices.

3. A model of operating systems should encompass all operating systems without any
prejudice for their designs and sizes.

4. It is desirable to have a model that can be extended to cover multiprocessor computer
systems.

4. Performance Simulation of Operating Systems
A computer system comprises of several types of resources including one or more processors

and peripheral devices. An operating system uses some scheduling algorithm or the other to
appropriately distribute these resources among various competing tasks in the computer system.
The performances of these scheduling algorithms can be modeled using the probability theory and
their functioning can be precisely simulated. Such simulations can be used to study different arrival
and service patterns of the tasks, and can prove immensely beneficial in apprehending the relative
performances of the scheduling algorithms under various circumstances [8].

5. Performance Evaluation of Operating Systems
At advanced levels, a qualitative study of operating systems is not enough and quantitative

analyses are stressed upon. A quantitative study of an operating system requires experimental
measurement of the performance of the operating system at the runtime [9]. These measurements
are performed by special programs known as profilers. Profilers can be employed for evaluating
performance measures related to both timescale and reliability. A typical profiler determines the

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2009|No.5(22)

 176

time taken to perform each elementary task in the computer system and the reliability associated
with it. From these measurements, the relative suitability of the various algorithms and methods
used in operating systems can be judged. This approach becomes most evocative when coupled
with a precise model of operating system. In such a case, it illustrates a comprehensive statistical
model of the entire operating system.

6. Concluding Remarks
Four unconventional and novel approaches to teach and learn courses on computer operating

systems have been briefly overviewed in the current paper. The pedagogical operating systems and
the models of operating systems can be used to study the courses on operating systems at both
elementary and expert levels of learning. Alternatively, simulation and performance measurement
based approaches are suitable only at an expert level of study. However, these four approaches
should be employed in tandem (Figure 1) for a comprehensive study of computer operating systems
at the research levels.

Figure 1: A scheme to facilitate comprehensive study of operating systems.

References

[1] Silberschatz, A., Galvin, P.B. and Gagne, G., Operating System Principles. 7th ed., John Wiley
& Sons, 2006.

[2] Chakraborty, P. and Gupta, R.G., A structural classification and related design issues of
operating systems. Proceedings of Second National Conference on Methods and Models in
Computing, 2007, pp. 265-273.

[3] Tanenbaum, A.S., A Unix clone with source code for operating systems courses. ACM SIGOPS
Operating Systems Review, 1987, 21(1): 20-29.

[4] Chakraborty, P. and Gupta, R.G., The design of a pedagogical operating system. Proceedings of
Second National Conference on Computing for Nation Development, 2008, pp. 517-527.

[5] Tanenbaum, A.S. and Woodhull, A.S., Operating Systems Design and Implementation. 3rd ed.,
Prentice-Hall, 2006.

[6] Chakraborty, P. 2008. Verbose mode of operation of a pedagogical virtual machine operating
system, Proceedings of Third National Conference on Methods and Models in Computing, pp.
40-48.

[7] Chakraborty, P., A language for easy and efficient modeling of Turing machines. Progress in
Natural Science, 2007, 17(7): 867-871.

[8] Hansen, P.B., Operating System Principles. Prentice-Hall, 1973.
[9] Meurs, R., Building Performance Measurement Tools for the Minix 3 Operating System. M.Sc.

Thesis, Vrije University, Amsterdam, 2006.

Article received: 2009-01-17

Formal or
semiformal

model

Pedagogical
operating
system

Performance
evaluation

Performance
simulation

Concepts

Feedback

Statistical
analyses

Probabilistic
analyses

Feedback

Feedback Feedback

