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Abstract 

Conventional recognition approaches do not permit noisy patterns and significant 
information cannot be detected from incomplete data. This paper designs an Artificial 
Neural Network (ANN) that can recognize digitized-freehand characters. The characters 
considered include (i) letters A-Z (ii) digits 0-9 and (iii) symbols or special characters 
(+, -, *, /, =, (, ), ^ and %). We use the competitive-learning approach to learn and 
recognize the digital writings. The designed network has a Graphic User Interface (GUI) 
where the user draws the desired input pattern in a drawing area with the help of a 
mouse. The input pattern is then digitized by fitting the resulting character into a 6×8 
pixel grid. The character is finally trained before recognition. Implementation shows 
that our system can recognize noisy patterns and incomplete inputs. While correctly 
written inputs could learn faster, incomplete inputs took sometime to learn. The 
efficiency of this design is directly proportional to the number of training sets for each 
pattern. The design is also adaptable to other pattern classifiers. 
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1. Introduction 
The goal of pattern recognition is to apply a set of example solutions to certain problems to 

infer an underlying regularity, which subsequently can be used to solve new problem instances, [1]. 
Examples are hand-written digit recognition, medical image screening and finger print 
identification. One central issue in any pattern recognition application is that of generalization, i.e. 
the performance of the trained model when applied to previously unseen data. 

[2] uses a superficial model to train a perceptron neural network to recognize digits 0-9 by 
pattern classification. They implement a single-layer perceptron by applying the “Perceptron 
learning rule” using bipolar inputs with a typewritten modality. Input to their design is a text file 
from which the user builds a matrix of desired digits. The output of the design is the classification 
results. Their design is restrictive and cannot classify noisy patterns and incomplete inputs.  

[3] reports on a classifier design project for recognizing typing digits. He follows a 
conventional classifier design process discussed in [4] to derive two classifiers using decision tree 
and nearest neighbour methods. 

The construction of locally linear generative models with a collection of pixel-based digital 
images used in capturing different writing styles is seen in [5]. Their research classifies new images 
by evaluating their log-likelihood under each model. 

Feature extraction is an essential step towards a good classifier. An automated reading system 
like a human reader should meet two requirements. It should have omni-writing capabilities to 
recognize different handwritings and a mono-writing capability that takes into account the potential 
fantasy of each writer. Hence, learning machines requires sophisticated and highly adaptable pattern 
recognition algorithms to enable them read hand-written texts. The machine also needs to manage 
in general, the various levels of interpretations (i.e. from the graphical level up to the lexical and 
syntactical levels). The human expertise in managing these interpretation levels depends on some 
abilities of learning the current handwriting. Current recognition systems do not possess these 
learning abilities. The recognition is considered to be a pure omni-writer problem, [6]. Recognition 
systems try to recognize handwritten words or letters, one independently from the other in a 
sequential manner, [7], [8].  
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Two approaches are used to perform handwritten cursive words recognition. The first is the 
analytical, a data-driven bottom-up approach where letters are recognized before a lexical analysis 
is performed, [9], [10]. Here to offset the letter recognition problem before recognition, several 
segmentation hypothesis must be managed making the letter recognition modules more complex 
since it must be able to reject the bad segmentation hypothesis. However, the final decision can only 
be taken by the lexical verification module. The second approach, is the holistic, a top-down 
approach with verification. In this approach, the letters segmentation is offset by recognizing a 
whole word and selecting word candidates from a lexicon. This approach leans either on the 
detection of holistic features in the word, [11], [12] or on the verification that some letters or parts 
of the letters are present at some word positions [13]. The first approach is well adapted to word 
recognition belonging to a large lexicon or even without a lexicon. The second approach is rather 
well adapted to limited lexicon applications. These two approaches could be combined to improve 
recognition, [14]. Some recent studies try to accommodate the problem of handwriting variability 
by clustering handwritings into families of handwriting styles, [15]. The recognizers are then 
trained for each specific family, but an intermediary-style choice is required to select the fitted 
recognizer, before the recognition phase, leaning itself on problem-specific recognition schemes. 

The writer’s invariants concept, which defines a set of similar patterns automatically extracted 
from handwriting segmentations is presented in [16]. They illustrate how this concept allows for the 
derivation of new contextual graphical knowledge that can be used to adapt the recognition task to a 
particular handwriting and allow for robust decisions making when neither simple lexical nor 
syntactical rules can be used. [6] explains how the recognition system can adapt itself to the current 
handwriting for recognition by exploiting the graphical context defined by the writer’s invariants. 
They justify the need for an open multi-agent architecture to support the implementation of such an 
adaptation principle. The proposed platform allows for the plugging of expert treatments dedicated 
to handwriting analysis. 

This paper implements an ANN that can recognize and classify freehand characters (letters, 
digits and symbols) through digitization. It applies the competitive learning approach and allow 
training cycles, where the input pattern is learned by the recognition system. To fully train the 
network, the system should undergo at least three cycles. The learned data can be stored in file(s) 
and used for the recognition of subsequent inputs. The recognized pattern is then classified and the 
pattern matching probabilities for each character displayed. 

The justification of this research lies in the ability of our network to recognize and classify 
noisy and incomplete inputs/patterns, which conventional recognition approaches do not permit. 
The approach adopted by our network could match noisy and incomplete inputs, outputting the 
degree (in percentage) of how close or far that pattern is to learned characters. The character with 
the highest percentage is selected as the best matched pattern. The design could also be transformed 
into a more sophisticated network for noisy/incomplete detection.  

2. Design components and methods 
Various learning rules that can cause a network to learn have been applied in the field of 

neural networks. Some of these rules include: 

(i)   Perceptron Rule 
The perceptron is a network in which the neuron unit calculates the linear combination of its 

real-valued or Boolean inputs and passes it through a Threshold activation function: 
)(
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Threshold is the activation function defined as Threshold(s) = 1 if s>0 and -1 otherwise. The 
perceptron rule is a sequential learning procedure for updating the weights and is given by: 

 ieeeii xyww )( Θ−+= η          (2) 
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where 
 is the desired output, ey
  is the output generated by the perceptron, eΘ
  is the weight associated with the ith connection, iw
 η  is the learning rate parameter. 
 
(ii)   Hebb’s Rule 
The Hebb’s rule states that if a neuron receives an input from another neuron, and both are 

highly active, i.e. mathematically have the same sign, the weights between the neurons should be 
strengthened. 

Hebbian rule, which are used mainly to train auto-associative networks, can also be used to 
train pattern associating networks. Hebbian rule receive strong support from neurophysiological 
studies that demonstrate synaptic weight changes associated with pre-synaptic and post-synaptic 
activity, [17]. 

 
(iii)   Hopfield Network 
The Hopfield network is a recurrent neural network in which all connections are symmetric. 

This network guarantees that its dynamics will converge. If the connections are trained using 
Hebbian learning, then the Hopfield network can perform as robust content-addressable memory, 
resistant to connection alteration. The Hopfield network is particularly useful in image detection, 
[18]. 

 
(iv)  Delta Rule 
The delta rule is the gradient descent learning rule for updating the weights of the artificial 

neurons in a single-layer perceptron. For a neuron j with activation function g(x), the delta rule for 
j’s ith weight is given by: jiw

ijijji xhgytw )()( ′−=Δ α         (3) 
where  

α  is a constant called learning rate 
 g(x) is the neuron’s activation function 
  is the target output jt
  is the actual output iy
  is the ith input ix
It holds that  and . ∑= jiij wxh )( ji hgy =

The delta rule is commonly stated in a simplified form for a perceptron with a linear activation 
function thus: 
 iijji xytw )( −=Δ α          (4) 
 

(iv)   Competitive Learning 
The competitive rule makes use of a two-layered network; i.e. the input layer and the output 

layer. Each neuron in the input layer is connected to all the neurons in the output layer.  The 
network adjusts weights linking an input neuron to an output neuron according to the algorithm: 
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The above algorithm means that: if a particular input neuron is active (represented by the 
black dots in Fig. 5.), the weights connecting the input to the desired output should be increased by 
an amount equal to: 

})({
*

μijijij wwnw −=Δ         (6) 
where 

ijw  =   weight connecting the neuron to the desired output. 
*
ijw  =  desired weight that should connect the input neuron  to the desired output neuron. 

n    =   learning rate, usually 10 ≤≤ n  
μ  =   state of input (1 = on, 0 = off) 

else,  
the weight should not be increased )0( =Δ ijw  

ijx  =     any of the links 
*
ijx  =    link connecting the input neuron to the desired output neuron. 

This implies that if an input neuron is activated, then the weight connecting it to the desired 
output neuron should be adjusted, and for all other links, no adjustments should be made. The 
weights connecting the outputs to each other are also adjusted such that only the loop is increased 
while the other weights are decreased. 

In this paper we implement the competitive learning rule. Our network permits three training 
cycles (i.e. the maximum allowable weights defined by the user). Thus for the first training cycle an 
incremental amount of 1 is produced as computed below using equation (5):  

13.
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For an inactive neuron, μ = 0. Hence no increment takes place.  
During use, in order to recognize an input character, the weights connecting each output 

neuron to all the input neurons are summed for all output neurons and the output with the highest 
weight-sum wins and is activated. The network derives its name here since all the output neurons 
compete among themselves for activation. As a result, only one output is selected at a time. This 
phenomenon is also known as a winner takes all network. Our choice for this type of network stems 
from the fact that we can make use of any number of input and output neurons and no back-
propagation is involved. 

3. System Model 
Our design as earlier mentioned has a GUI with a drawing area of 6×8 pixel grid box. The 

system has an underlying neural network engine, which processes the input from the interface 
window and produces as output, the recognized character. During learning, the neural network 
engine will adjust weights linking the input neurons to the output neurons. Thus a simple model to 
illustrate the system is shown in Fig. 3. 

 
Fig. 3. Our ANN system model 
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The system operates in two modes: the learn mode and the use mode. During the learn mode, 

the system trains the underlying neural network with data supplied by the user. The trained data is 
saved to a file. Several training files are allowed. During the use mode, the system identifies the 
inputs, classifying them either as an alphabet A-Z, digit 0-9 or a symbol: +, -, *, /, =, (, ), ^, and %. 
The character inventory module in the program could be expanded to accommodate other input 
symbols and characters.  

 
Neural Network (NN) Engine Architecture 
The NN engine consists of a NN based on a competitive learning architecture. It is two-

layered. The input layer contains 48 neurons and the output layer contains 26 neurons. The 
architecture has no hidden layer. This engine processes the input data and produces the output. The 
engine is also responsible for weights adjustment linking the input neurons to the output neurons. 
The NN architecture is a simple two-layered Kohonen network and is illustrated in Fig. 4. 

 
Fig. 4. (a). A simple Kohonen Network    (b) Kohonen Neural Network with SOM 

 
The Kohonen network (SOM) is able to organize the neuron values into separate groups, 

keeping similar values together in order to form “clusters’. The NN is unsupervised; i.e. it is able to 
group the input data into clusters without any pre-held information concerning how these clusters 
will eventually look like. Each output node contains a vector of randomly set numbers which has 
the same length as the input vector. During training, every input vector is connected with every 
node on the output layer (see Fig. 4(b).) 

 
Applications 
Kohonen’s Self organizing feature maps algorithm have been applied to cortical maps to 

detect orientation and direction preference in cats, ferrets and monkeys, [20].  
Detection of certain behaviours and inferring meaning from them has already been attempted 

by the London Underground train stations that tested CCTV “smart software” designed to spot any 
abnormal behaviour, [19]. The strategy employed by this software, though does not attempt any 
complex modelling of behaviour, simply compares the CCTV real-time footage with an image of 
the empty station and alerts staff members of any suspicious object “loitering” in the same position 
for an abnormal amount of time. 

Monitoring behaviour via computers has been attempted, as many airports have increased 
security and need for accurate measures to observe people.  Systems are put in place to track airport 
users via the use of their air ticket.  Obviously not only for check in. Some airports have to swipe 
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the ticket if users buy items in a duty free shop or enter the toilets.  All information are recorded 
about the time of certain events as a way of keeping track of individuals. 

  
Learning/Training the Network 
Many training vectors are presented to the network and a winner output node is chosen based 

on the “Best Matching Unit” (BMU) –  the node whose vector is the closest to the input data. Once 
a BMU is chosen, its values are adjusted to better match the input vector which effectively 
strengthens the ability of that node to recognize similar patterns. The surrounding units are moved 
closer to each BMU eventually forming a cluster of similar data. The training process is repeated 
until the NN has effectively categorized all input patterns. 

Once the entire training set has been presented to the network, an epoch is reached. Usually 
the NN undergoes many epochs during its training phase and for each row of data a winning node is 
selected and strengthened to better represent the input set. After each epoch, some data may not be 
“well represented”; in this case our network selects the least likely node as the winning node. This 
node is trained to represent the underrepresented row by altering its weight accordingly. This way, 
the network avoids only representing occurring data inputs. 

In this design, each input neuron will have 26 outward-weighted links to the 26 output 
neurons in the output layer. The output layer will consist of 26 output neurons each connected to all 
others by weights and one loop back to itself. Thus each output neuron will have 26 outward 
weighted links in addition to 48 inward weighted links from all the input neurons. A partial view of 
connections identifying a sample alphabet H as a class of the input neurons (black dots) is shown in 
Fig. 5. 

The learning rate of our network is computed by making - the learning rate, the subject in 
equation (6). During training, the function that adjusts the learning rate to ensure that the number of 
learning steps is maintained is shown below: 

n

void CompeteNet::adjustLearningRate(double _wt_change){ 
if(round(_wt_change) == 0.0) 
learning_rate = 1; 
else 
learning_rate = no_of_steps / _wt_change; 
}  
 

 
Fig. 5.  The Neural Network Architecture (e.g. identification of the letter H). 
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The percentage learning rates for the characters are stored in a matrix and computed thus: 
learn_rates[desired_output] = (1 – ((expected – diff) / expected)) * 100.0; 

where 
 expected = (no_of_active_cells * desired_weight); 
 diff = output[desired_output] → weighted_score;  
A fully trained network must produce 100%. 
The function that returns the winning neuron is implemented with the following code: 

int CompeteNet::getWinner(){ 
       int win  = 0; 

int maxS = score_percent[0];// set maximum score to that of the first Oneuron 
       for(int j = 0; j < oneurons; j++){// get highest score 
           getProbability(j); 
           if (maxS < score_percent[j]){             
               maxS = score_percent[j]; 
               win  = j;      
                  } 
            } 
            return win; // return highest 
    } 

Each character has a matching score (probability), which represent how close or far the 
recognized character is to the input. The percentage pattern matching probability of the characters is 
implemented with the if statement below: 

if(neuron_score == 0)// if total score of Oneuron is 0 
score_percent[desired_output] = 0; // its probability should be set to 0. 

      else{// its not zero so calculate probability in percentage       
       score_percent[desired_output] = (( neuron_score * 100.0) / expected_score); 
       }}      

 
Algorithm 
The algorithm implementing our NN is given below: 

(1)  Start 
(2)   Select mode (1-Learn mode, 2-Use mode) 
(3)   If mode=2? then Goto (15) 
(4) Call draw_image(); enable user to draw image or activate desired pixel in a  grid box. 
(5)   Call InterfaceStatus_transfer_to_NN(); a function that causes the state of the cells to be 

transferred to the NN engine. 
(6)   Call TrainNetwork(); function that trains the network 
(7)   Call adjust_weight(); weight adjustment function 
(8)   Call SetLearning_steps(); function that sets the learning cycles 
(9)   Call ComputeWeightedScore(); Compute weights function 
(10) GetProbability(); 
(11) GetWinner(); 
(12) Call Learn_rate_Interface(); return status report 
(13) Call Output_display(); display learning rate 
(14) Goto (21) 
(15) Call draw_image(); enable user to draw image or activate desired pixel in a  grid box. 
(16)   Call InterfaceStatus_transfer_to_NN(); a function that causes the state of the cells to be 

transferred to the NN engine. 
(17) Call TrainNetwork(); function that trains the network 
(18) Call Process_input(); a function to recognize the character 
(19) Return WinnerWeighted_sum and MatchProbability 
(20) Using WinnerWeighted_sum and MatchProbability, Call Output_display(); display 

resembling character and probability values. 
(21) Exit? (Yes/No) 
(22) If yes, then End, else, Goto (2) 
(23) Stop 
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4.  Implementation 
The design of a system is incomplete without testing, implementation and documentation. In 

this section we test the recognition system with sample input data. The system was trained to 
recognize freehand written digital characters. Both complete and incomplete (inc) data were input. 
We observed that it took some time to learn/train incomplete and wrong inputs. Necessary 
corrections were made to the program and the program subjected to several trials. 
Sample input/output of our recognition system are shown below: 

 
Fig. 6(a). Output-letter C after training        Fig.6(b). Output-letter C after recognition 

 

 
Fig.7(a).Output-Digit 2 (inc) after training     Fig.7(b).Output-Digit 2 (inc) after recognition 

 
Fig.8(a). Output-Symbol * (inc) after training  Fig.8(b). Output-Symbol * (Inc) after recognition 
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Fig. 9(a). Output- Symbol / after training     Fig. 9(b). Output-Symbol / after recognition 

 
From the above results, we observe that the system could perfectly recognize characters C and 

/ with pattern matching probabilities of 0.83 and 0.87 respectively (see figs. 6(b) and 9.(b)). For 
incomplete inputs (digit 2 and symbol *), the system fairly recognized the characters with pattern 
matching probabilities of 0.50 and 0.37 respectively (see figs. 7(b) and 8(b)). 

5. Conclusion 
Pattern recognition systems built with the NN technology are being utilized in many aspects 

of life to enhance efficiency and also provide better services to customers. This paper has shown 
how freehand characters are recognized using NNs. When compared with the ordinary system of 
pattern recognition process, it has the ability to tolerate noisy patterns and also recognize 
incomplete data. Pattern recognition systems have been found to be very useful in online 
applications such as banking (e.g. for signature verification), and at security checkpoints (e.g. 
thumb print verification). This new area of technology will be the next direction of our research. We 
aim at developing further sophisticated models by building on the current paper. 

  Although the efficiency of NN approach depends on the number of training sets, it 
has been discovered that it still remains a better approach to pattern recognition. Also, since the 
automation of pattern recognition processes are becoming increasingly important in data processing, 
the speed of the neural network approach hence makes it more suitable for real time applications. 
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